- PII
- 10.31857/S0207401X23010119-1
- DOI
- 10.31857/S0207401X23010119
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 1
- Pages
- 15-21
- Abstract
- The electrophysical properties of powders of carbon hybrid nanosized composites are studied depending on the content of single-wall carbon nanotubes (CNTs) and thermally reduced graphite oxide (TRGO). The effect of the bicomponent composition of the hybrid material is studied and the results of measurements of the specific low-frequency electrical conductivity at a frequency of 1 kHz, complex dielectric permittivity, and conductivity at a frequency of 9.8 GHz for the powders given above are presented. The effect of γ-irradiation on the measured characteristics of the powders is revealed. Research is aimed at finding fillers for modern effective composite radio-absorbing materials.
- Keywords
- гибридные углеродные наноразмерные композиты оксид графита термовосстановленный оксид графита электрофизические свойства комплексная диэлектрическая проницаемость.
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Клименко И.В., Лобанов А.В., Трусова Е.А. и др. // Хим. физика. 2019. Т. 38. № 12. С. 74; https://doi.org/10.1134/S0207401X19120094
- 2. Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Хим. физика. 2020. Т. 39. № 1. С. 75; https://doi.org/10.31857/S0207401X2001015X
- 3. Арбузов А.А., Володин А.А., Тарасов Б.П. // ЖФХ. 2020. Т. 94. № 5. С. 760; https://doi.org/10.31857/S0044453720050039
- 4. Zhu Y., Li L., Zhang C. et al. // Nat. Commun. 2012. V. 3. Article 1225; https://doi.org/10.1038/ncomms2234
- 5. Палазник О.М., Недорезова П.М., Польщиков С.В. и др. // Высокомолекуляр. соединения. 2019. Сер. Б. Т. 61. № 2. С. 144; https://doi.org/10.1134/S2308113919020086
- 6. Zhang X., Zhao Z., Xu J. et al. // Carbon. 2021. V. 177. P. 216; https://doi.org/10.1016/j.carbon.2021.02.085
- 7. Chen J., Liu B., Yan L. // Results Phys. 2019. V. 14. 102363; https://doi.org/10.1016/j.rinp.2019.102363
- 8. Liu Z., Qian Z., Song J. et al. // Carbon. 2019. V. 149. P. 181;https://doi.org/10.1016/j.carbon.2019.04.037
- 9. Feng J., Dong L., Li X. et al. // Electrochim. Acta. 2019. V. 302. P. 65; https://doi.org/10.1016/j.electacta.2019.02.008
- 10. Li J., Tang J., Yuan J. et al. // Chem. Phys. Lett. 2018. V. 693. P. 60; https://doi.org/10.1016/j.cplett.2017.12.052
- 11. Тарасов Б.П., Арбузов А., Можжухин С.А. и др. // Журн. структур. химии. 2018. Т. 59. № 4. С. 867; https://doi.org/10.26902/JSC20180411
- 12. Laurila T., Sainio S., Caro M.A. // Prog. Mater. Sci. 2017. V. 88. P. 499; https://doi.org/10.1016/j.pmatsci.2017.04.012
- 13. Romano M.S., Li N., Antiohos D. et al. // Adv. Mater. 2013. V. 25. № 45. P. 6602; https://doi.org/10.1002/adma.201301754
- 14. Abdalla I., Elhassan A., Yu J. et al. // Carbon. 2020. V. 157. P. 703; https://doi.org/10.1016/j.carbon.2019.11.004
- 15. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60; https://doi.org/10.31857/S0207401X20120146
- 16. Zhou E., Xi J., Guo Y. et al. // Carbon. 2018. V. 133. P. 316; https://doi.org/10.1016/j.carbon.2018.03.023
- 17. You B., Wang L., Yao L. et al. // Chem. Commun. 2013. V. 49. № 44. P. 5016; https://doi.org/10.1039/c3cc41949e
- 18. Yuan Z., Xiao X., Li J. et al. // Adv. Sci. 2018. V. 5. № 2. Article 1700626; https://doi.org/10.1002/advs.201700626
- 19. Mittal G., Dhand V., Rhee K.Y. et al. // J. Ind. Eng. Chem. 2015. V. 21. P. 11; https://doi.org/10.1016/j.jiec.2014.03.022
- 20. Lin X., Liu X., Jia J. // Compos. Sci. Technol. 2014. V. 100. P. 166; https://doi.org/10.1016/j.compscitech.2014.06.012
- 21. Арбузов А.А., Мурадян В.Е., Тарасов Б.П. // Изв. АН. Сер. хим. 2013. № 9. С. 1962.
- 22. Ilin E.S., Bezrodny A.E., Predtechenskiy M.R. // TechConnect Briefs 2016. V. 1. Ch. 2 (Adv. Mater.). P. 65.
- 23. Бранд А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Изд-во физ.-мат. лит., 1963.
- 24. Shepherd C., Hadzifejzovic E., Shkal F. et al. // Langmuir. 2016. V. 32. P. 7917; https://doi.org/10.1021/acs.langmuir.6b02013
- 25. Cuenca J.A., Thomas E., Mandal S. et al. // Carbon. 2015. V. 81. P. 174; https://doi.org/10.1016/j.carbon.2014.09.046
- 26. Slocombe D., Porch A., Bustarret E. et al. // Appl. Phys. Lett. 2013. V. 102. № 24. Article 244102; https://doi.org/10.1063/1.4809823
- 27. Hotta M., Hayashi M., Lanagan M.T. et al. // ISIJ Intern. 2011. V. 51. № 11. P. 1766.
- 28. Симбирцева Г.В., Бабенко С.Д., Кирюхин Д.П. // Хим. физика. 2022. Т. 41. № 4. С. 32.
- 29. Song M., Xu P., Song Y. et al. // AIP Adv. 2015. V. 5. № 9. Article 097130; https://doi.org/10.1063/1.4930966
- 30. Пивень Н.П., Симбирцева Г.В., Арбузов А.А. и др. // Химия высоких энергий. 2019. Т. 53. № 6. С. 498; https://doi.org/10.1134/S0023119319060123