RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Structural Features of Polylactide Films Obtained from a Melt and Solution

PII
10.31857/S0207401X23010120-1
DOI
10.31857/S0207401X23010120
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 1
Pages
43-49
Abstract
The morphology and structure of polylactide film samples obtained from a melt and from a solution in chloroform are studied. The crystallization process of polylactide takes place under nonisothermal conditions. It is determined that the melting and crystallization points of the polylactide sample obtained from the solution are, respectively, 2 and 4°C lower than the sample obtained from the melt. Using optical polarization microscopy, it is shown that the sample obtained from the solution has a spherulite structure, while spherulites are not detected in the polylactide sample obtained from the melt. The X-ray diffraction patterns of the polylactide samples crystallized from the solution and melt are different. Well-defined reflexes characteristic of the crystalline modification of the α-form are recorded on the diffractogram of the sample obtained from the solution. The pressed polylactide sample has an initially X-ray amorphous structure, which partially transforms into a crystalline structure during annealing for 60 min at 90°C. X-ray diffraction analysis revealed differences in the degree of crystallinity over the thickness of the polylactide sample obtained from the solution.
Keywords
кристаллизация из раствора кристаллизация из расплава полилактид температура плавления рентгеновская дифракция степень кристалличности.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Nampoothiri K.M., Nair N.R., John R.P. // Bioresour. Technol. 2010. V. 101. P. 8493; https://doi.org/10.1016/j.biortech.2010.05.092
  2. 2. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика. 2022. Т. 41. № 2. С. 86; https://doi.org/10.31857/S0207401X22020133
  3. 3. Xiao L., Wang B., Yang G., Gauther M. Biomedical Science, Engineering and Technology / Ed. Ghista D.N. London, UK: Intech Open, 2012. Ch. 11. P. 247; https://doi.org/10.5772/1020
  4. 4. Роговина С.З., Алексанян К.В., Владимиров Л.В., Берлин А.А. // Хим. физика. 2019. Т. 38. № 9. С. 39; https://doi.org/10.1134/S0207401X19090097
  5. 5. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  6. 6. Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика. 2020. Т. 39. № 6. С. 71; https://doi.org/10.31857/S0207401X20060096
  7. 7. Варьян И.А., Колесникова Н.Н., Попов А.А. // Хим. физика. 2021. Т. 40. № 12. С. 42; https://doi.org/10.31857/S0207401X21120153
  8. 8. Yasuniwa M., Iura K., Dan Y. // Polymer. 2007. V. 48. P. 5398; https://doi.org/10.1016/j.polymer.2007.07.012
  9. 9. Vasanthakumari R., Pennings A.J. // Ibid. 1983. V. 24. P. 175.
  10. 10. Miyata T., Masuko T. // Ibid. 1998. V. 39. P. 5515.
  11. 11. Wasanasuk K., Tashiro K., Hanesaka M. et al. // Macromolecules. 2011. V. 44. P. 6441.
  12. 12. Kobayashi J., Asahi T., Ichiki M. et al. // J. Appl. Phys. 1995. V. 77. P. 2957.
  13. 13. Puiggali J., Ikada Y., Tsuji H., Lotz B. // Polymer. 2000. V. 41. P. 8921.
  14. 14. Ohtani Y., Okumura K., Kawaguchi A. // J. Macromol. Sci. Phys.: B. 2003. V. 42. P. 875; https://doi.org/10.1081/MB-120021612
  15. 15. Hoogsten W., Postema A.R., Pennings A.J., Brinke G., Zugenmaier P. // Macromolecules. 1990. V. 23. P. 634.
  16. 16. Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B. // Polymer. 2000. V. 41. P. 8909.
  17. 17. Wang H., Zhang J., Tashiro K. // Macromolecules. 2017. V. 50. P. 3285.
  18. 18. Тертышная Ю.В., Карпова С.Г., Шаталова О.В., Кривандин А.В., Шибряева Л.С. // Высокомолекуляр. соединения. Сер. А. 2016. Т. 58. № 1. С. 54; https://doi.org/10.7868/S2308112016010119
  19. 19. Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. 20. Krivandin A.V., Solov’eva A.B., Glagolev N.N., Shatalova O.V., Kotova S.L. // Polymer. 2003. V. 44. P. 5789.
  21. 21. Кривандин А.В., Фаткуллина Л.Д., Шаталова О.В., Голощапов А.Н., Бурлакова Е.Б. // Хим. физика. 2013. Т. 32. № 5. С. 91.
  22. 22. Вайнштейн Б.К. Дифракция рентгеновых лучей на цепных молекулах. М.: Изд-во АН СССР, 1963.
  23. 23. Lorenzo M.L. // Europ. Polym. J. 2005. V. 41. P. 569; https://doi.org/10.1016/j.eurpolymj.2004.10.020
  24. 24. Xu J., Guo B.-H., Zhou J.-J., Li L., Wu J., Kowalczuk M. // Polymer. 2005. V. 46. P. 9176.
  25. 25. Yasuniwa M., Tsubakihara S., Iura K. et al. // Ibid. 2006. V. 47. P. 7554; https://doi.org/. Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2006.08.054
  26. 26. Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2008.02.034
  27. 27. Zhang J., Tashiro K., Tsuji H., Domb A.J. // Macromolecules. 2008. V. 4. P. 1352; https://doi.org/10.1021/ma0706071
  28. 28. Huang Z., Zhong M., Yang H. et al. // Polymers. 2021. V. 13. 3377; https://doi.org/10.3390/polym13193377
  29. 29. Zhang L., Zhao G., Wang G. // Ibid. 2021. V. 13. 3280; https://doi.org/10.3390/polym13193280
  30. 30. Hu C., Lv T., Li J., Huang S. et al. // ACS Appl. Polym. Mater. 2019. V. 1. P. 2552; https://doi.org/10.1021/acsapm.9b00722
  31. 31. Wasanasuk K., Tashiro K. // Polymer. 2011. V. 52. P. 6097; https://doi.org/10.3390/polym13193280
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library