- PII
- 10.31857/S0207401X23020127-1
- DOI
- 10.31857/S0207401X23020127
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 2
- Pages
- 88-94
- Abstract
- Using the Landauer–Buttiker formalism and the nonorthogonal tight-binding Hamiltonian with NTBM parametrization, the electron transmission and conductivity of metal armchair-type nanotubes of subnanometer diameter are studied. We consider the effect of various structural defects (Stone–Wales defect, monovacancy, replacing a nitrogen atom) and radicals adsorbed on the nanotube surface (H, O, OH, COOH) on the electronic characteristics of carbon nanotubes (CNTs). It is found that structural defects and adsorbates have different effects on their conductivity. In this case, two competing processes are observed. On the one hand, this is a weakening of the conductive properties of CNTs due to the increase in the number of scattering centers, and, on the other hand, the increase in conductivity due to structural relaxation processes.
- Keywords
- нанотрубки сенсоры электронная трансмиссия формализм Ландауэра–Буттикера модель сильной связи.
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Iijima S. // Nature. 1991. V. 354. P. 56; https://doi.org/10.1038/354056a0
- 2. Rahman G., Najaf Z., Mehmood A. et al. // C. 2019. V. 5. № 3. P. 3; https://doi.org/10.3390/c5010003
- 3. Li M., Liu X., Zhao X. et al. // Single-Walled Carbon Nanotubes / Eds. Li Y., Maruyama S. Springer Intern. Publ., 2019. P. 25; https://doi.org/10.1007/978-3-030-12700-8_2
- 4. Guo T., Nikolaev P., Rinzler A.G. et al. // J. Phys. Chem. 1995. V. 99. P. 10694; https://doi.org/10.1021/j100027a002
- 5. Guo T., Nikolaev P., Thess A. et al. // Chem. Phys. Lett. 1995. V. 243. P. 49; https://doi.org/10.1016/0009-2614 (95)00825-O
- 6. Kosakovskaya Z.Y., Chernozatonskii L.A., Fedorov E.F. // Pri’sma Zh. Eksp. Teor. Fiz. 1992. V. 56. P. 26.
- 7. Journet C., Bernier P. // Appl. Phys. A. 1998. V. 67. P. 1; https://doi.org/10.1007/s003390050731
- 8. Mintmire J.W., Dunlap B.I., White C.T. // Phys. Rev. Lett. 1992. V. 68. P. 631; https://doi.org/10.1103/PhysRevLett.68.631
- 9. Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474; https://doi.org/10.1038/386474a0
- 10. Hamada N., Sawada S., Oshiyama A. // Phys. Rev. Lett. 1992. V. 68. P. 1579; https://doi.org/10.1103/PhysRevLett.68.1579
- 11. Wilder J.W.G., Venema L.C., Rinzler A.G. et al. // Nature. 1998. V. 391. P. 59; https://doi.org/10.1038/34139
- 12. Min-Feng Y., Oleg L., J. D.M. et al. // Science. 2000. V. 287. P. 637; https://doi.org/10.1126/science.287.5453.637
- 13. Baimova J.A., Fan Q., Zeng L. et al. // J. Nanomater. 2015. V. 2015. P. 186231; https://doi.org/10.1155/2015/186231
- 14. Annin B.D., Baimova Y.A., Mulyukov R.R. // J. Appl. Mech. Tech. Phys. 2020. V. 61. P. 834; https://doi.org/10.1134/S0021894420050193
- 15. Berber S., Kwon Y.-K., Tománek D. // Phys. Rev. Lett. 2000. V. 84. P. 4613; https://doi.org/10.1103/PhysRevLett.84.4613
- 16. Kochaev A. // Phys. Rev. B. 2017. V. 96. P. 155428; https://doi.org/10.1103/PhysRevB.96.155428
- 17. Kim P., Shi L., Majumdar A. et al. // Phys. Rev. Lett. 2001. V. 87. P. 215502; https://doi.org/10.1103/PhysRevLett.87.215502
- 18. Kochaev A., Katin K., Maslov M. // Comput. Condens. Matter. 2019. V. 18. P. e00350; https://doi.org/10.1016/j.cocom.2018.e00350
- 19. Ashraf M.A., Liu Z., Najafi M. // Rus. J. Phys. Chem. B. 2020. V. 14. № 2. P. 217; https://doi.org/10.1134/S1990793120020189
- 20. Дышин А.А., Кузьмиков М.С., Алешонкова А.А. и др. // Сверхкрит. флюиды: теория и практика. 2021. Т. 16. С. 3; https://doi.org/10.1134/S1990793121080030
- 21. Zuev Y.I., Vorobei A.M., Parenago O.O. // Rus. J. Phys. Chem. B. 2021. V. 15. № 7. P. 1107; https://doi.org/10.1134/S1990793121070174
- 22. Vorobei A.M., Zuev Y.I., Dyshin A.A. et al. // Rus. J. Phys. Chem. B. 2021. V. 15. № 8. P. 1314; https://doi.org/10.1134/S1990793121080169
- 23. Bianco A., Kostarelos K., Partidos C.D. et al. // Chem. Commun. 2005. P. 571; https://doi.org/10.1039/B410943K
- 24. Balasubramanian K., Burghard M. // Small. 2005. V. 1. P. 180; https://doi.org/10.1002/smll.200400118
- 25. Harrison B.S., Atala A. // Biomaterials. 2007. V. 28. P. 344; https://doi.org/10.1016/j.biomaterials.2006.07.044
- 26. de las Casas C., Li W. // J. Power Sources. 2012. V. 208. P. 74; https://doi.org/10.1016/j.jpowsour.2012.02.013
- 27. Jeong H.Y., Lee D.-S., Choi H.K. et al. // Appl. Phys. Lett. 2010. V. 96. P. 213105; https://doi.org/10.1063/1.3432446
- 28. Leghrib R., Pavelko R., Felten A. et al. // Sens. Actuators, B. 2010. V. 145. P. 411; https://doi.org/10.1016/j.snb.2009.12.044
- 29. Kumar S., Pavelyev V., Mishra P. et al. // Sens. Actuators, A. 2018. V. 283. P. 174; https://doi.org/10.1016/j.sna.2018.09.061
- 30. Doshi M., Fahrenthold E.P. // Surf. Sci. 2022. V. 717. P. 121 998; https://doi.org/10.1016/j.susc.2021.121998
- 31. Eskandari P., Abousalman-Rezvani Z., Roghani-Mamaqani H. et al. // Adv. Colloid Interface Sci. 2021. V. 294. P. 102471; https://doi.org/10.1016/j.cis.2021.102471
- 32. Guo C., Wang Y., Wang F. et al. // Nanomater. 2021. V. 11. № 9. 2353; https://doi.org/10.3390/nano11092353
- 33. da Silva Alves D.C., Healy B., Pinto L.A. de A. et al. // Molecules. 2021. V. 26. № 3. 594; https://doi.org/10.3390/molecules26030594
- 34. Hu J., Yu J., Li Y. et al. // Nanomater. 2020. V. 10. № 4. 664; https://doi.org/10.3390/nano10040664
- 35. Jones R.S., Kim B., Han J.-W. et al. // J. Phys. Chem. C. 2021. V. 125. P. 9356; https://doi.org/10.1021/acs.jpcc.0c11451
- 36. Chang X., Chen L., Chen J. et al. // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 435; https://doi.org/10.1007/s42114-021-00292-3
- 37. Ridhi R., Chouksey A., Gautam S. et al. // Sensors Actuators, B. 2021. V. 334. P. 129658; https://doi.org/10.1016/j.snb.2021.129658
- 38. Jian J., Guo X., Lin L. et al. // Ibid. 2013. V. 178. P. 279; https://doi.org/10.1016/j.snb.2012.12.085
- 39. Mann D., Javey A., Kong J. et al. // Nano Lett. 2003. V. 3. P. 1541; https://doi.org/10.1021/nl034700o
- 40. Cui K., Kumamoto A., Xiang R. et al. // Nanoscale. 2016. V. 8. P. 1608; https://doi.org/10.1039/C5NR06007A
- 41. Hong B.H., Small J.P., Purewal M.S. et al. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 14155 LP; https://doi.org/10.1073/pnas.0505219102
- 42. Nanotube Modeler; http://jcrystal.com/products/wincnt/
- 43. Катин К.П., Маслов М.М. // Хим. физика. 2011. Т. 30. № 10. С. 41; https://doi.org/10.1134/S1990793111090181
- 44. Maslov M., Podlivaev A., Katin K. // Mol. Simul. 2016. V. 42. P. 305; https://doi.org/10.1080/08927022.2015.1044453
- 45. Katin K.P., Grishakov K.S., Podlivaev A.I. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 2065; https://doi.org/10.1021/acs.jctc.9b01229
- 46. Markussen T., Rurali R., Brandbyge M. et al. // Phys. Rev. B. 2006. V. 74. P. 245313; https://doi.org/10.1103/PhysRevB.74.245313
- 47. Prudkovskiy V., Berd M., Pavlenko E. et al. // Carbon. 2013. V. 57. P. 498; https://doi.org/10.1016/j.carbon.2013.02.027
- 48. Grishakov K.S., Katin K.P., Maslov M.M. // Adv. Phys. Chem. 2016. V. 2016. P. 1862959; https://doi.org/10.1155/2016/1862959
- 49. Podlivaev A.I., Openov L.A. // Semiconductors. 2017. V. 51. P. 636; https://doi.org/10.1134/S1063782617050219
- 50. Podlivaev A.I., Openov L.A. // Phys. Solid State. 2015. V. 57. P. 2562; https://doi.org/10.1134/S1063783415120276
- 51. Katin K.P., Maslov M.M. // J. Phys. Chem. Solids. 2017. V. 108. P. 82; https://doi.org/10.1016/j.jpcs.2017.04.020
- 52. Katin K.P., Shostachenko S.A., Avkhadieva A.I. et al. // Adv. Phys. Chem. 2015. V. 2015. P. 506894; https://doi.org/10.1155/2015/506894
- 53. Büttiker M. // Phys. Rev. Lett. 1986. V. 57. P. 1761; https://doi.org/10.1103/PhysRevLett.57.1761
- 54. Landauer R. // Philos. Mag. A J. Theor. Exp. Appl. Phys. 1970. V. 21. P. 863; https://doi.org/10.1080/14786437008238472
- 55. Büttiker M., Imry Y., Landauer R. et al. // Phys. Rev. B. 1985. V. 31. P. 6207; https://doi.org/10.1103/PhysRevB.31.6207
- 56. Fisher D.S., Lee P.A. // Phys. Rev. B. 1981. V. 23. P. 6851; https://doi.org/10.1103/PhysRevB.23.6851
- 57. Katin K.P., Maslov M.M. // Adv. Condens. Matter Phys. 2015. V. 2015. P. 754873; https://doi.org/10.1155/2015/754873
- 58. Slepchenkov M.M., Shmygin D.S., Zhang G. et al. // Carbon. 2020. V. 165. P. 139; https://doi.org/10.1016/j.carbon.2020.04.069
- 59. Glukhova O.E., Shmygin D.S. // J. Nanotechnol. 2018. V. 9. P. 1254; https://doi.org/10.3762/bjnano.9.117
- 60. Sancho M.P.L., Sancho J.M.L., Rubio J. // J. Phys. F Met. Phys. 1984. V. 14. P. 1205; https://doi.org/10.1088/0305-4608/14/5/016
- 61. Nardelli M.B. // Phys. Rev. B. 1999. V. 60. P. 7828; https://doi.org/10.1103/PhysRevB.60.7828
- 62. Sancho M.P.L., Sancho J.M.L., Sancho J.M.L. et al. // J. Phys. F Met. Phys. 1985. V. 15. P. 851; https://doi.org/10.1088/0305-4608/15/4/009
- 63. White C.T., Todorov T.N. // Nature. 1998. V. 393. P. 240; https://doi.org/10.1038/30420
- 64. Salem M.A., Katin K.P., Kaya S. et al. // Physica. E. 2020. V. 124. P. 114319; https://doi.org/10.1016/j.physe.2020.114319
- 65. Katin K.P., Maslov M.M. // Ibid. 2018. V. 96. P. 6; https://doi.org/10.1016/j.physe.2017.09.021
- 66. Goler S., Coletti C., Tozzini V. et al. // J. Phys. Chem. C. 2013. V. 117. P. 11 506; https://doi.org/10.1021/jp4017536