- PII
- 10.31857/S0207401X2306002X-1
- DOI
- 10.31857/S0207401X2306002X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 6
- Pages
- 21-39
- Abstract
- The molecular dynamics of a rod-like oligomer of N-isopropylmethacrylamide and helical oligomers of pyridine-furan several nanometers in size are studied by full-atomic computer simulation. It is shown that, under compression and tension, the dynamics of the oligomers are similar to the dynamics of classical bistable constructions such as Euler arches and Duffing oscillators. The critical values of power loads at which the dynamic states of oligomers bifurcate and the dynamics of oligomers become bistable are determined. It is shown that in the region of bistability oligomers can switch to the regime of spontaneous vibrations activated by thermal fluctuations of the environment at room temperature. For the regime of spontaneous vibrations, the effect of stochastic resonance is demonstrated. The possibility of using bistable oligomers for the detection of single organic molecules in solutions is discussed.
- Keywords
- олигомеры молекулярные машины бистабильность стохастический резонанс компьютерное моделирование.
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Peschot A. // Micromachines. 2015. V. 6. № 8. P. 1046.
- 2. Dutreix C., Avriller R., Lounis B. et al. // Phys. Rev. Res. 2020. V. 2. № 2. P. 023268.
- 3. Benda L., Doistau B., Rossi-Gendron C. et al. // Commun. Chem. 2019. V. 2. № 1. P. 1.
- 4. Erbas-Cakmak S., Kolemen S., Sedgwick A. C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228.
- 5. Varghese S., Elemans J. A. A. W., Rowan A. E. et al. // Chem. Sci. 2015. V. 6. P. 6050.
- 6. Shu T., Shen Q., Zhang X. et al. // Analyst. 2020. V. 145. № 17. P. 5713.
- 7. Lemme M.C., Wagner S., Lee K. et al. // Research. 2020. V. 2020. P. 1.
- 8. Zhang L., Marcos V., Leigh D.A. // PNAS. 2018. V. 115. № 38. P. 9397.
- 9. Shi Z.-T., Zhang Q., Tian H. et al. // Adv. Intelligent Systems. 2020. V. 2. № 5. P. 1900169.
- 10. Aprahamian I. // ACS Central Sci. 2020. V. 6. № 3. P. 347.
- 11. Nicoli F., Paltrinieri E., Tranfić M. // Coord. Chem. Rev. 2021. V. 428. P. 213589.
- 12. Evans D.J., Searles D.J. // Adv. Phys. 2002. V. 51. № 7. P. 1529.
- 13. Seifert U. // Rep. Prog. Phys. 2012. V. 75. № 12. P.126001.
- 14. Horowitz J.M., Gingrich T.R. // Nat. Phys. 2020. V. 16. № 1. P. 15.
- 15. Ciliberto S. // Phys. Rev. X. 2017. V. 7. P. 021051.
- 16. Wang G.M., Sevick E.M., Mittag E. et al. //Phys. Rev. Lett. 2002. V. 89. № 5. P. 050601.
- 17. Jop P., Petrosyan A., Ciliberto S. // Europhys. Lett. 2008. V. 81. № 5. P. 50005.
- 18. Vroylandt H., Esposito M., Verley G. // Phys. Rev. Lett. 2020. V. 124. № 25. P. 250603.
- 19. Аветисов В.А., Гольданский В.И. // УФН. 1996. Т. 166. № 8. С. 873.
- 20. Avetisov V.A., Goldanskii V.I. // PNAS. 1996. V. 93. P. 11 435.
- 21. Аветисов В.А. Гольданский В.И. // Хим. физика. 1997. Т. 16. № 8. С. 59.
- 22. Аветисов В.А. // Хим. физика. 2003. Т. 22. № 2. С. 16.
- 23. Arnold V.I. / Catastrophe Theory. Berlin-Heidelberg: Springer, 1984.
- 24. Poston T., Stewart I. Catastrophe theory and its applications. Mineola, N.Y.: Dover Publication, 1996.
- 25. Duffing G. Erzwungene schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg № 41–42. F. Vieweg & Sohn, 1918.
- 26. Chaos / Eds. Korsch H.J., Jodl H.-J., Hartmann T. Berlin–Heidelberg: Springer, 2008. P. 157.
- 27. Kramers H.A. // Physica. 1940. V. 7. № 4. P. 284.
- 28. Benzi R., Sutera A., Vulpiani A. // J. Phys. A: Math. Gen. 1981. V. 14. № 11. P. L453.
- 29. Benzi R., Parisi G., Sutera A. et al. // Tellus. 1982. V. 34. № 1. P. 10.
- 30. Benzi R., Parisi G., Sutera A. et al. // SIAM J. Appl. Mathem. 1983. V. 43. № 3. P. 565
- 31. Gammaitoni L., Haönggi P., Jung P. et al. // Rev. Modern Phys. 1998. V. 70. № 1. P. 223.
- 32. Wellens T., Shatokhin V., Buchleitner A. // Rep. Prog. Phys. 2004. V. 67. № 1. P. 45.
- 33. Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z.r et al. // Science. 1999. V. 284. P. 1340.
- 34. Fujii H., Setiadi A., Kuwahara Y. et al. // Appl. Phys. Lett. 2017. V. 111. № 13. P. 133501.
- 35. Huang K., Zhang S., Li J. et al // Microsystem Technol. 2019. V. 25. № 11. P. 4303.
- 36. Ackerman M.L., Kumar P., Neek-Amal M. et al. // Phys. Rev. Lett. V. 117. № 12. P. 126 801.
- 37. Hayashi K., Lorenzo S., Manosas M. et al. // Phys. Rev. X. 2012. V. 2. № 3. P. 031 012.
- 38. Cecconi C., Shank E.A., Bustamante C. et al. // Science. 2005. V. 309. № 5743. P. 2057.
- 39. Avetisov V.A., Markina A.A. Valov A.F. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 5189.
- 40. Avetisov V.A., Frolkina M.A., Markina A. et al // Nanomaterials. 2021. V. 11. P. 3264.
- 41. Markina A., Muratov A., Petrovskyy V. et al. // Nanomaterials. 2020. V. 10. P.2519.
- 42. Convertine A.J., Ayres N., Scales C.W. et al. // Biomacromolecules. 2004. V. 5. № 4. P. 1177.
- 43. Gao Y., Wei M., Li X. et al. // Macromol. Res. 2017. V. 25. № 6. P. 513.
- 44. Kamath G., Deshmukh S.A., Baker G.A. // Phys. Chem. Chem. Phys. 2013. V. 15. № 30. P. 12667.
- 45. Jones R.A., Civcir P.U. // Tetrahedron. 1997. V. 53. № 34. P. 11529.
- 46. Sahu H., Gupta S., Gaur P. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 32. P. 20647.
- 47. Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. № 24. P. 6269.
- 48. Abraham M.J., Murtola T., Schulz R. et al. // Software X. 2015. V. 1–2. P. 19.
- 49. Kaminski G.A., Friesner R.A., Tirado-Rives J. et al. // J. Phys Chem. B. 2001. V. 105. № 28. P. 6474.
- 50. Liang X., Nakajima K. // Macromol. Chem. Phys. 2018. V. 219. № 3. P. 1700394.
- 51. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101.
- 52. Avetisov V.A, Kuz’min V.V, Anikin S.A. // Chem. Phys. 1987. V. 112. № 2. P. 179.
- 53. Lai Z., Leng Y. // Mech. Systems Signal Processing. 2016. V. 81. P. 60.