ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Энергетический барьер фотоиндуцированного разделения зарядов в реакционных центрах фотосистем 1 и 2

Код статьи
10.31857/S0207401X23060043-1
DOI
10.31857/S0207401X23060043
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 42 / Номер выпуска 6
Страницы
88-94
Аннотация
В работе анализируется энергетика реакций фотоиндуцированного разделения зарядов между близкорасположенными молекулами хлорофилла (Хл) и феофитина (Фео). Реакционные центры фотосистем (ФС) 1 и 2 включают в себя три пары спектрально-сходных порфириновых кофакторов, структура которых допускает возможность реализации альтернативных механизмов первичного разделения зарядов. Рассматривается континуальная модель образования ион-радикальных пар в диэлектрическом окружении, основанная на рассчитанных ab initio парциальных зарядах. Модель описывает экспериментальную зависимость среднеточечных редокс-потенциалов Хл и Фео в растворах с различной диэлектрической проницаемостью. В рамках этой модели определена энергия образования первичных ион-радикальных пар для обсуждаемых в литературе альтернативных механизмов разделения зарядов в ФС 1 и ФС 2. В рассматриваемом приближении в ФС 2 первичное разделение зарядов между мономером Хл (ХлD1) и Фео (ФеоD1) является единственным энергетически допустимым механизмом. Отсутствие Фео в аналогичной позиции в реакционном центре ФС 1 приводит к тому, что в этом комплексе мономер Хл не может выступать в качестве первичного донора электрона. Стабилизация первичной ион-радикальной пары в ФС 1 может происходить за счет делокализации электронной плотности в димере специальной пары молекул Хл (Р700) и гетеродимере молекул Хл, образующих первичный акцептор А0.
Ключевые слова
фотосистема 1 фотосистема 2 хлорофилл <i>а</i> феофитин <i>а</i> ион-радикальная пара первичное разделение зарядов.
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Медведев Э.С., Котельников А.И., Горячев Н.С. и др. // Хим. физика. 2011. Т. 30. № 3. С. 71.
  2. 2. Schenderlein M., Çetin M., Barber J. et al. // Biochim. Biophys. Acta-Bioenerg. 2008. V. 1777. № 11. P. 1400; https://doi.org/10.1016/j.bbabio.2008.08.008
  3. 3. Gorka M., Charles P., Kalendra V. et al. // iScience. 2021. V. 24. № 7. P. 102719; https://doi.org/10.1016/j.isci.2021.102719
  4. 4. Chauvet A., Dashdorj N., Golbeck J.H. et al. // J. Phys. Chem. B. 2012. V. 116. № 10. P. 3380; https://doi.org/10.1021/jp211246a
  5. 5. Cherepanov D.A., Shelaev I. V., Gostev F.E. et al. // Photochem. Photobiol. Sci. 2021. V. 20. № 9. P. 1209; https://doi.org/10.1007/s43630-021-00094-y
  6. 6. Shuvalov V.A. // Biochim. Biophys. Acta-Bioenerg. 1976. V. 430. № 1. P. 113; https://doi.org/10.1016/0005-2728 (76)90227-9
  7. 7. Savikhin S. Photosystem I. Advances in Photosynthesis and Respiration. V. 24 / Ed. Golbeck J.H. Dordrecht: Springer, 2006. P. 155; https://doi.org/10.1007/978-1-4020-4256-0_12
  8. 8. Shelaev I.V., Gostev F.E., Mamedov M.D. et al. // Biochim. Biophys. Acta-Bioenerg. 2010. V. 1797. № 8. P. 1410; https://doi.org/10.1016/j.bbabio.2010.02.026
  9. 9. Gorka M., Baldansuren A., Malnati A. et al. // Front. Microbiol. 2021. V. 12. P. 2776; https://doi.org/10.3389/fmicb.2021.735666
  10. 10. Cherepanov D.A., Shelaev I. V., Gostev F.E. et al. // Biochim. Biophys. Acta-Bioenerg. 2017. V. 1858. № 11. P. 895; https://doi.org/10.1016/j.bbabio.2017.08.008
  11. 11. Plato M., Krauß N., Fromme P., Lubitz W. // Chem. Phys. 2003. V. 294. № 3. P. 483; https://doi.org/10.1016/S0301-0104 (03)00378-1
  12. 12. Artiukhin D.G., Eschenbach P., Neugebauer J. // J. Phys. Chem. B. 2020. V. 124. № 24. P. 4873; https://doi.org/10.1021/acs.jpcb.0c02827
  13. 13. Müller M.G., Niklas J., Lubitz W., Holzwarth A.R. // Biophys. J. 2003. V. 85. № 6. P. 3899; https://doi.org/10.1016/s0006-3495 (03)74804-8
  14. 14. Molotokaite E., Remelli W., Casazza A.P. et al. // J. Phys. Chem. B. 2017. V. 121. № 42. P. 9816; https://doi.org/10.1021/acs.jpcb.7b07064
  15. 15. Климов В.В., Аллахвердиев С.И., Деметер Ш., Красновский А.А. // Докл. АН СССР. 1979. Т. 49. С. 227.
  16. 16. Tomo T., Allakhverdiev S.I., Mimuro M. // J. Photochem. Photobiol., B. 2011. V. 104. № 1–2. P. 333; https://doi.org/10.1016/j.jphotobiol.2011.02.017
  17. 17. Кувыкин И.В., Вершубский А.В., Тихонов А.Н. // Хим. физика. 2009. Т. 28. № 4. С. 63.
  18. 18. Nadtochenko V.A., Shelaev I. V., Mamedov M.D. et al. // Biochem. 2014. V. 79. № 3. P. 197; https://doi.org/10.1134/S0006297914030043
  19. 19. Raszewski G., Saenger W., Renger T. // Biophys. J. 2005. V. 88. № 2. P. 986; https://doi.org/10.1529/biophysj.104.050294
  20. 20. Novoderezhkin V.I., Romero E., Dekker J.P., Van Grondelle R. // Chem. Phys. Chem. 2011. V. 12. № 3. P. 681; https://doi.org/10.1002/cphc.201000830
  21. 21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian. 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
  22. 22. Parr R.G., Weitao Y. Density-Functional Theory of Atoms and Molecules. N.Y.: Oxford Academic, 1995; https://doi.org/10.1093/OSO/9780195092769.003.0005
  23. 23. Jordan P., Fromme P., Witt H.T. et al. // Nature. 2001. V. 411. № 6840. P. 909; https://doi.org/10.1038/35082000
  24. 24. Britt R.D., Marchiori D.A. // Science. 2019. V. 366. № 6463. P. 305; https://doi.org/10.1126/science.aaz4522
  25. 25. Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044 108; https://doi.org/10.1063/1.3185673
  26. 26. Черепанов Д.А., Милановский Г.Е., Айбуш А.В., Надточенко В.А. // Хим. физика. 2023.
  27. 27. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
  28. 28. Rocchia W., Alexov E., Honig B. // J. Phys. Chem. B. 2001. V. 105. № 28. P. 6507; https://doi.org/10.1021/jp010454y
  29. 29. Vauthey E. // Chem. Phys. Chem. 2012. V. 13. № 8. P. 2001; https://doi.org/10.1002/cphc.201200106
  30. 30. Kellogg M., Akil A., Muthiah Ravinson D.S. et al. // Faraday Discuss. 2019. V. 216. P. 379; https://doi.org/10.1039/c8fd00201k
  31. 31. Krishtalik L.I. // Biochim. Biophys. Acta-Bioenerg. 2011. V. 1807. № 11. P. 1444; https://doi.org/10.1016/J.BBABIO.2011.07.002
  32. 32. Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
  33. 33. Ptushenko V.V., Cherepanov D.A., Krishtalik L.I., Semenov A.Y. // Photosynth. Res. 2008. V. 97. № 1. P. 55; https://doi.org/10.1007/s11120-008-9309-y
  34. 34. Lebedev A.Y., Filatov M.A., Cheprakov A.V., Vinogradov S.A. // J. Phys. Chem. A. 2008. V. 112. № 33. P. 7723; https://doi.org/10.1021/jp8043626
  35. 35. Sazanovich I.V., Galievsky V.A., Van Hoek A. et al. // J. Phys. Chem. B. 2001. V. 105. № 32. P. 7818; https://doi.org/10.1021/jp010274o
  36. 36. Röder B., Büchner M., Rückmann I., Senge M.O. // Photochem. Photobiol. Sci. 2010. V. 9. № 8. P. 1152; https://doi.org/10.1039/c0pp00107d
  37. 37. Wasielewski M.R., Smith R.L., Kostka A.G. // J. Amer. Chem. Soc. 1981. V. 102. № 23. P. 358; https://doi.org/10.1021/JA00543A004/ASSET/JA00-543A004.FP.PNG_V03
  38. 38. Kobayashi M., Ohashi S., Iwamoto K. et al. // Biochim. Biophys. Acta-Bioenerg. 2007. V. 1767. № 6. P. 596; https://doi.org/10.1016/j.bbabio.2007.02.015
  39. 39. Saji T., Bard A.J. // J. Amer. Chem. Soc. 1977. V. 99. № 7. P. 2235; https://doi.org/10.1021/ja00449a034
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека