RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Synthesis and Properties of poly(p-xylylene)–Molybdenum Oxide Nanocomposites

PII
10.31857/S0207401X23070142-1
DOI
10.31857/S0207401X23070142
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 7
Pages
50-58
Abstract
Poly(p-xylylene)–molybdenum oxide nanocomposite thin films of different thicknesses and inorganic filler content are synthesized by low-temperature vapor deposition polymerization. The structure of the nanocomposites and its evolution during thermal annealing is studied by wide angle X-ray scattering and X-ray absorption spectroscopy. It is found that the molybdenum oxide nanoparticles are amorphous in both the as-deposited and annealed composite films. The short-range order characteristic of orthorhombic molybdenum trioxide is preserved in the nanoparticles; however, a noticeable disordering of the structure together with a decrease in the effective oxidation state of molybdenum are revealed. Both an increase in the filler content and thermal annealing lead to a decrease in the bandgap of the composites, which is related to the increase in the nanoparticle size. It is shown that thermal annealing improves the stability of the resistive switching (RS) characteristics in memristors based on the synthesized nanocomposites, which creates an opportunity for the application of these materials as the active layer of memristive devices.
Keywords
мемристор органическая электроника поли-пара-ксилилен композит наночастицы.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Wang Z., Wu H., Burr G. W. et al. // Nat. Rev. Mater. 2020. V. 5. № 3. P. 173.
  2. 2. Berggren K., Xia Q., Likharev K. et al. // Nanotechnology. 2021. V. 32. № 1. P. 012002.
  3. 3. Mikhaylov A., Pimashkin A., Pigareva Y. et al. // Front. Neurosci. 2020. V. 14. P. 1.
  4. 4. Demin V.A., Emelyanov A.V., Lapkin D.A. et al. // Crystallogr. Reports. 2016. V. 61. № 6. P. 992.
  5. 5. Yao P., Wu H., Gao B. et al. // Nature. 2020. V. 577. P. 641.
  6. 6. Milano G., Pedretti G., Montano K. et al. // Nat. Mater. 2022. V. 21. P. 195.
  7. 7. Emelyanov A.V., Nikiruy K.E., Serenko A.V. et al. // Nanotechnology. 2020. V. 31. № 4. P. 045201.
  8. 8. Makarov V.A., Lobov S.A., Shchanikov S. et al. // Front. Comput. Neurosci. 2022. V. 16.
  9. 9. Elliott S.R. // Intern. J. Appl. Glas. Sci. 2015. V. 6. № 1. P. 15.
  10. 10. Vincent A.F., Larroque J., Locatelliet N. et al. // IEEE Trans. Biomed. Circuits Syst. 2015. V. 9. № 2. P. 166.
  11. 11. Khakimov R.R., Chernikova A.G., Lebedinskii Y. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 10. P. 4317.
  12. 12. Lapkin D.A., Korovin A.N., Malakhov S.N. et al. // Adv. Electron. Mater. 2020. V. 6. № 10. P. 1.
  13. 13. Strukov D.B., Snider G.S., Stewart D.R. et al. // Nature. 2008. V. 453. № 7191. P. 80.
  14. 14. Minnekhanov A.A., Shvetsov B.S., Martyshov M.M. et al. // Org. Electron. 2019. V. 74. P. 89.
  15. 15. Banerjee W., Liu Q., Hwang H. // J. Appl. Phys. 2020. V. 127. № 5.
  16. 16. Choi S., Tan S.H., Li Z. et al. // Nat. Mater. 2018. V. 17. № 4. P. 335.
  17. 17. Martyshov M.N., Emelyanov A.V., Demin V.A. et al. // Phys. Rev. Appl. 2020. V. 14. № 3. P. 1.
  18. 18. Matsukatova A.N., Emelyanov A.V., Kulagin V.A. et al. // Org. Electron. 2022. V. 102. P. 10645.
  19. 19. Zeng T., Zou X., Wang Z. et al. // Small. 2021. V. 17. № 13. P. 2006662.
  20. 20. Громов В.Ф., Иким М.И., Герасимов Г.Н. и др. // Хим. физика. 2021. Т. 40. № 12. С. 76.
  21. 21. Иким М.И., Спиридонова Е.Ю., Белышева Т.В. и др. // Хим. физика. 2016. Т. 35. № 6. С. 90.
  22. 22. Мацукатова А.Н., Емельянов А.В., Миннеханов А.А. и др. // Письма в ЖТФ. 2020. Т. 46. № 2. С. 25
  23. 23. Matsukatova A.N., Emelyanov A.V., Minnekhanov A.A. et al. // Appl. Phys. Lett. 2020. V. 117. № 24. P. 243501.
  24. 24. Minnekhanov A.A., Emelyanov A.V., Lapkin D.A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 10800.
  25. 25. Zavyalov S.A., Grigoriev E.I. Zavyalov A.S. et al. // Intern. J. Nanosci. 2005. V. 04. № 01. P. 149.
  26. 26. Streltsov D.R., Mailyan K.A., Gusev A.V. et al. // Polymer. 2015. V. 71. P. 60.
  27. 27. Nesmelov A.A., Oveshnikov L.N., Ozerin S.A. et al. // J. Phys. Chem. C. 2019. V. 123. № 16. P. 10517.
  28. 28. Oveshnikov L.N., Zavyalov S.A., Trunkin I.N. et al. // Sci. Rep. 2021. V. 11. № 1. P. 16004.
  29. 29. Yeh Y.S., James W.J., Yasuda H. // J. Polym. Sci., Part B: Polym. Phys. 1990. V. 28. № 4. P. 545.
  30. 30. Pokhodnya K.I., Bonner M., Miller J.S. // Chem. Mater. 2004. V. 16. № 24. P. 5114.
  31. 31. Hübers H.W., Schubert J., Krabbe A. et al. // Infrared Phys. Technol. 2001. V. 42. № 1. P. 41.
  32. 32. Shvetsov B.S., Minnekhanov A.A., Emelyanov A.V. et al. // Nanotechnology. 2022. V. 33. № 25. P. 255201.
  33. 33. Deb S.K., Bowden F.P. // Proc. Roy. Soc. London, Ser. A. 1968. V. 304. № 1477. P. 211.
  34. 34. Xue Q., Wang Y.C., Wei X.H. // Appl. Surf. Sci. 2019. V. 479. P. 469.
  35. 35. Трахтенберг Л.И., Герасимов Г.Н., Григорьев Е.И. // ЖФХ. 1999. Т. 73. № 2. С. 209
  36. 36. Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95.
  37. 37. Ravel B. // J. Synchrotron. Rad. 2005. V. 12. P. 537.
  38. 38. Суровой Э.П., Еремеева Г.О. // Неорган. материалы. 2013. Т. 49. № 5. С. 500.
  39. 39. Tauc J. // Mater. Res. Bull. 1968. V. 3. P. 37.
  40. 40. Ressler T., Wienold J., Jentoft R.E. et al. // J. Catal. 2002. V. 210. P. 67.
  41. 41. Farges F., Siewert R., Brown G.E. et al. // Can. Mineral. 2006. V. 44. P. 731.
  42. 42. Andersson G., Magneli A. // Acta Chem. Scand. 1950. V. 4. P. 793.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library