ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Модель конвективного режима горения гранулированных смесей, используемых в процессах самораспространяющегося высокотемпературного синтеза

Код статьи
10.31857/S0207401X23080034-1
DOI
10.31857/S0207401X23080034
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 42 / Номер выпуска 8
Страницы
3-11
Аннотация
Недавние публикации по горению гранулированной шихты, предназначенной для синтеза композиций на основе карбида титана, выявили значительные изменения характеристик и скорости горения при спутном потоке инертного газа. Авторы исследований связали эти изменения с конвективным режимом горения. В данной работе приведена теоретическая модель, которая позволяет анализировать вклад конвективной передачи тепла при горении гранулированной шихты в спутном потоке газа в процессах самораспространяющегося высокотемпературного синтеза. Показано, что в зависимости от расхода горячего газа, продуваемого сквозь гранулированный образец, возможны три режима горения. При отсутствии или небольшом расходе газа (на уровне 1 кг/м2 · с и ниже) роль конвекции незначительна, а фронт горения в основном плоский. При умеренных расходах (на уровне 10 кг/м2 · с) влияние конвекции становится заметным, скорость горения возрастает вдвое, а фронт горения уже не является плоским, поскольку поверхностные слои гранул разогреваются быстрее, чем слои в центре. Наконец, при высоких расходах (на уровне 50 кг/м2 · с) вклад конвекции становится преобладающим, скорость горения превышает базовую (в отсутствие обдува газом) более чем на порядок величины и происходит значительная перестройка структуры волны горения.
Ключевые слова
конвективное горение гранулированная шихта спутный поток газа теплообмен процессы самораспространяющегося высокотемпературного синтеза.
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. // Физика горения и взрыва. 2019. Т. 55. № 3. С. 57; https://doi.org/10.15372/FGV20190307
  2. 2. Сеплярский Б.С., Тарасов А.Г., Кочетков Р.А. // Хим. физика. 2013. Т. 32. № 6. С. 61; https://doi.org/10.7868/S0207401X13060113
  3. 3. Сеплярский Б.С., Кочетков Р.А. // Хим. физика. 2017. Т. 36. № 9. С. 21; https://doi.org/10.7868/S0207401X17090126
  4. 4. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г., Абзалов Н.И. // Хим. физика. 2020. Т. 39. № 1. С. 31; https://doi.org/10.31857/S0207401X20010136
  5. 5. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Хим. физика. 2021. Т. 40. № 3. С. 23; https://doi.org/10.31857/S0207401X21030109
  6. 6. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Физика горения и взрыва. 2022. Т. 58. № 2. С. 58; https://doi.org/10.15372/FGV20220206
  7. 7. Алдушин А.П. // Физика горения и взрыва. 1990. Т.26. № 2. С. 60.
  8. 8. Сеплярский Б.С., Вадченко С.Г. // Докл. РАН. 2004. Т. 398. № 1. С. 72.
  9. 9. Алдушин А.П., Сеплярский Б.С. // Докл. АН СССР. 1979. Т. 249. № 3. С. 585.
  10. 10. Гусаченко Л.К., Зарко В.Е., Серебряков Ю.Ю., Карасев В.В., Шандаков В.А. // Физика горения и взрыва. 2001. Т. 37. № 5. С. 55.
  11. 11. Беляев А.Ф., Боболев В.К., Коротков А.И., Сулимов А.А., Чуйко С.В. Переход горения конденсированных систем во взрыв. М.: Наука, 1973.
  12. 12. Ермолаев Б.С., Сулимов А.А. Конвективное горение и низкоскоростная детонация пористых энергетических систем. М.: Торус пресс, 2017; ISBN 978-5-94588-217-1
  13. 13. Храповский В.Е., Ермолаев Б.С., Сулимов А.А. // Хим. физика. 2021. Т. 40. № 1. С. 37; https://doi.org/10.31857/S0207401X21010040
  14. 14. Михалкин В.Н., Сумской С.И., Тереза А.М., Трошин К.Я., Хасаинов Б.А., Фролов С.М. // Хим. физика. 2022. Т. 41. № 8. С. 3; https://doi.org/10.31857/S0207401X2208009X
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека