RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The Mutual Influence of the Turbulence Coefficient and Reynolds Number on the Formation of a Turbulent Process: 1. The Randomness Coefficient

PII
10.31857/S0207401X23090054-1
DOI
10.31857/S0207401X23090054
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 9
Pages
83-91
Abstract
The equations of multimoment hydrodynamics, supplemented by stochastic components, are used to study the chaotic distortion of a regular flow in the wake of a sphere. The mutual influence of the Reynolds number and the intensity of weak disordered perturbations in the incident flow, characterized by the turbulence coefficient, is investigated. The calculations show that the turbulent flow pattern is formed due to the excessive growth of disordered perturbations in the unstable recirculating zone in the near wake behind the sphere. The transition from laminar to turbulent motion has a considerable length on the Reynolds number scale. The turbulence coefficient is a key factor influencing the formation of a turbulent flow pattern. Low values of the turbulence coefficient can block the occurrence of turbulence even at arbitrarily high values of the Reynolds number. On the contrary, high values of the turbulence coefficient can initiate turbulence even at relatively low values of the Reynolds number. The degree of the development of turbulence is interpreted in terms of randomness coefficients depending on the Reynolds number and the turbulence coefficient. The previously formulated idea on the nature of turbulence is confirmed. The regular component of turbulence is formed as a result of unstable motion of coherent structures. Excessively expanding disordered perturbations form the chaotic component of turbulence.
Keywords
многомоментная гидродинамика коэффициент турбулентности хаотическое искажение.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Alfonci G. // Appl. Mech. Rev. 2009. V. 62. № 040802.
  2. 2. Sagaut P. Large Eddy Simulation for Incompressible Flows. N.Y.: Springer, 2006.
  3. 3. Лебедь И.В., Уманский С.Я. // Хим. физика. 2007. Т. 26. № 1. С. 65.
  4. 4. Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1.
  5. 5. Kiselev A.Ph., Lebed I.V. // Chaos Solitons Fractals. 2021. V. 142. № 110491.
  6. 6. Taylor G.I. // Proc. Roy. Soc. London. A. 1935. V. 151. P. 421.
  7. 7. Moffatt H.K. // J. Fluid Mech. 1981. V. 106. P. 27.
  8. 8. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 1. С. 79.
  9. 9. Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 6. С. 80
  10. 10. Lebed I.V. // Physica A. 2019. V. 515. P. 715.
  11. 11. Lebed I.V. // Physica A. 2019. V. 524. P. 325.
  12. 12. Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
  13. 13. Lebed I.V. The foundations of multimoment hydrodynamics, Part 1: ideas, methods and equations. N.Y.: Nova Sci. Publ., 2018.
  14. 14. Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P. 1.
  15. 15. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 1. С. 77.
  16. 16. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С. 81.
  17. 17. Sakamoto H., Haniu H. // J. Fluid Mech. 1995. V. 287. P. 151.
  18. 18. Mikami F., Toyota R., Nishikawa N. // J Phys: Conf. Ser. 2010. V. 216. № 012013.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library