- PII
- 10.31857/S0207401X23110067-1
- DOI
- 10.31857/S0207401X23110067
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 42 / Issue number 11
- Pages
- 54-62
- Abstract
- The results of a study of water absorption processes by samples of polymer composite materials (PCMs) based on fiberglass, subjected to low-speed impact with controlled impact energy and alternating temperature cycling are presented. Using magnetic resonance imaging (MRI), the distribution of absorbed water in the fiberglass structure is visualized and the dynamics of its accumulation in various areas of the sample are studied. It is found that mechanical impact leads to a nonuniform distribution of the absorbed water in the samples and a significant accumulation of free water in the areas of destruction and adjacent layers in the event of a violation of the integrity of the outer layer of the material. It is shown that cyclic alternating temperature effects do not lead to a noticeable change in the water absorption processes and are comparable in effect to mechanical nondestructive effects. The results obtained using MRI are in close agreement with the data of traditional weight measurements, which shows the effectiveness of the method in diagnosing defects and mechanical damage to PCMs exposed to the aquatic environment.
- Keywords
- композиционный материал стеклопластик ядерный магнитный резонанс магнитно-резонансная томография водопоглощение.
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Кербер М.Л. Полимерные композиционные материалы. Структура. Свойства. Технологии. СПб.: Профессия, 2008.
- 2. Анпилова А.Ю., Масталыгина Е.Е., Храмеева Н.П. и др. // Хим. физика. 2020. Т. 39. № 1. С. 66; https://doi.org/10.31857/S0207401X20010021
- 3. Клименко И.В. // Хим. физика. 2022. Т. 41. № 2. С. 70; https://doi.org/10.31857/S0207401X22020054
- 4. Корнеева Н.В., Кудинов В.В., Крылов И.К. и др. // Хим. физика. 2019. Т. 38. № 9. С. 67; https://doi.org/10.1134/S0207401X19090036
- 5. Николаев Е.В., Павлов М.Р., Лаптев А.Б. и др. // Тр. ВИАМ. 2017. Т. 56. № 8. С. 64; https://doi.org/10.18577/2307-6046-2017-0-8-7-7
- 6. Wang Y. Principles of Magnetic Resonance Imaging: Physics Concepts, Pulse Sequences, & Biomedical Applications. CreateSpace Independent Publishing Platform, 2012.
- 7. Koptyug I.V. // Progr. Nucl. Magn. Reson. Spectroscopy. 2012. V. 65. P. 1.
- 8. Blumich B. NMR Imaging of Materials. Oxford: Clarendon Press, 2003.
- 9. Bouznik V.M., Morozov E.V., Avilova I.A. et al. // Appl. Magn. Reson. 2016. V. 47. №. 3. P. 321.
- 10. Morozov E.V., Novikov M.M., Bouznik V.M. // Addit. Manufact. 2016. V. 12. P. 16.
- 11. Morozov E., Novikov M., Bouznik V. et al. // Rapid Prototyp. J. 2019. V. 25. №. 6. P. 1007.
- 12. Соколов И.И., Раскутин А.Е. // Тр. ВИАМ. 2013. Т. 9. № 4. С. 4.
- 13. Startsev V.O., Il’ichev A.V. // Mech. Compos. Mat. 2018. V. 54. №. 2. P. 145.
- 14. Berketis K., Tzetzis D. // J. Mater. Sci. 2010. V. 45. № 20. P. 5611; https://doi.org/10.1007/s10853-010-4626-x
- 15. Старцев В.О., Панин С.В., Старцев О.В. // Механика композит. материалов. 2015. Т. 51. № 6. С. 1081.
- 16. Старцев В.О., Махоньков А.Ю., Котова Е.А. // Авиац. матер. и технологии. 2015. № S1. С. 49; https://doi.org/10.18577/2071-9140-2015-0-S1-49-55
- 17. Старцев О.В., Прокопенко К.О., Литвинов А.А. и др. // Клеи. Герметики. Технологии. 2009. № 8. С. 18.
- 18. Каблов Е.Н., Старцев О.В. // Авиац. матер. и технологии. 2015. Т. 4. № 37. С. 38; https://doi.org/10.18577/2071-9140-2015-0-4-38-52