RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Magnetic Resonance Imaging Study of Water Absorption of Polymer Composite Materials Subjected to Mechanical and Temperature Impact

PII
10.31857/S0207401X23110067-1
DOI
10.31857/S0207401X23110067
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 11
Pages
54-62
Abstract
The results of a study of water absorption processes by samples of polymer composite materials (PCMs) based on fiberglass, subjected to low-speed impact with controlled impact energy and alternating temperature cycling are presented. Using magnetic resonance imaging (MRI), the distribution of absorbed water in the fiberglass structure is visualized and the dynamics of its accumulation in various areas of the sample are studied. It is found that mechanical impact leads to a nonuniform distribution of the absorbed water in the samples and a significant accumulation of free water in the areas of destruction and adjacent layers in the event of a violation of the integrity of the outer layer of the material. It is shown that cyclic alternating temperature effects do not lead to a noticeable change in the water absorption processes and are comparable in effect to mechanical nondestructive effects. The results obtained using MRI are in close agreement with the data of traditional weight measurements, which shows the effectiveness of the method in diagnosing defects and mechanical damage to PCMs exposed to the aquatic environment.
Keywords
композиционный материал стеклопластик ядерный магнитный резонанс магнитно-резонансная томография водопоглощение.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Кербер М.Л. Полимерные композиционные материалы. Структура. Свойства. Технологии. СПб.: Профессия, 2008.
  2. 2. Анпилова А.Ю., Масталыгина Е.Е., Храмеева Н.П. и др. // Хим. физика. 2020. Т. 39. № 1. С. 66; https://doi.org/10.31857/S0207401X20010021
  3. 3. Клименко И.В. // Хим. физика. 2022. Т. 41. № 2. С. 70; https://doi.org/10.31857/S0207401X22020054
  4. 4. Корнеева Н.В., Кудинов В.В., Крылов И.К. и др. // Хим. физика. 2019. Т. 38. № 9. С. 67; https://doi.org/10.1134/S0207401X19090036
  5. 5. Николаев Е.В., Павлов М.Р., Лаптев А.Б. и др. // Тр. ВИАМ. 2017. Т. 56. № 8. С. 64; https://doi.org/10.18577/2307-6046-2017-0-8-7-7
  6. 6. Wang Y. Principles of Magnetic Resonance Imaging: Physics Concepts, Pulse Sequences, & Biomedical Applications. CreateSpace Independent Publishing Platform, 2012.
  7. 7. Koptyug I.V. // Progr. Nucl. Magn. Reson. Spectroscopy. 2012. V. 65. P. 1.
  8. 8. Blumich B. NMR Imaging of Materials. Oxford: Clarendon Press, 2003.
  9. 9. Bouznik V.M., Morozov E.V., Avilova I.A. et al. // Appl. Magn. Reson. 2016. V. 47. №. 3. P. 321.
  10. 10. Morozov E.V., Novikov M.M., Bouznik V.M. // Addit. Manufact. 2016. V. 12. P. 16.
  11. 11. Morozov E., Novikov M., Bouznik V. et al. // Rapid Prototyp. J. 2019. V. 25. №. 6. P. 1007.
  12. 12. Соколов И.И., Раскутин А.Е. // Тр. ВИАМ. 2013. Т. 9. № 4. С. 4.
  13. 13. Startsev V.O., Il’ichev A.V. // Mech. Compos. Mat. 2018. V. 54. №. 2. P. 145.
  14. 14. Berketis K., Tzetzis D. // J. Mater. Sci. 2010. V. 45. № 20. P. 5611; https://doi.org/10.1007/s10853-010-4626-x
  15. 15. Старцев В.О., Панин С.В., Старцев О.В. // Механика композит. материалов. 2015. Т. 51. № 6. С. 1081.
  16. 16. Старцев В.О., Махоньков А.Ю., Котова Е.А. // Авиац. матер. и технологии. 2015. № S1. С. 49; https://doi.org/10.18577/2071-9140-2015-0-S1-49-55
  17. 17. Старцев О.В., Прокопенко К.О., Литвинов А.А. и др. // Клеи. Герметики. Технологии. 2009. № 8. С. 18.
  18. 18. Каблов Е.Н., Старцев О.В. // Авиац. матер. и технологии. 2015. Т. 4. № 37. С. 38; https://doi.org/10.18577/2071-9140-2015-0-4-38-52
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library