RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Adaptation of the Kinetical Scheme to Ethylene Combustion Conditions at Temperatures Above 1200 K

PII
10.31857/S0207401X23120051-1
DOI
10.31857/S0207401X23120051
Publication type
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 12
Pages
39-47
Abstract
In the paper authors present original methods for analyzing the kinetic scheme and reaction rate constants for calculation of the ignition delay time and the laminar velocity of the combustion wave for C2H4–O2–Ar and C2H4-air mixtures. The kinetic scheme under consideration will further be applied in problems of plasma-assisted combustion in a supersonic flow using a discharge. After made changes to the reaction system, a good agreement between the calculation results and experimental data was obtained.
Keywords
химическая кинетика время задержки воспламенения этилен горение.
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Leonov S.B. // Energies. 2018. № 11(7). 1733; https://doi.org/10.3390/en11071733
  2. 2. Firsov A.A., Savelkin K.V., Yarantsev D.A., Leonov S.B. // Philos. Trans. R. Soc. London, Ser. A. 2015. V. 373. № 2048; https://doi.org/10.1098/rsta.2014.0337
  3. 3. Фролов С.М., Иванов В.С. // Хим. физика. 2021. Т. 40. № 4. С. 68; https://doi.org/10.31857/S0207401X21040075
  4. 4. Deak N., Bellemans A., Bisetti F. // Proc. Combust. Inst. 2021. V. 38. P. 6551; https://doi.org/10.1016/j.proci.2020.06.126
  5. 5. Kosarev I.N., Kindysheva S.V., Momot R.M. et al. // Combust. and Flame. 2016. V. 165. P. 259; https://doi.org/10.1016/j.combustflame.2015.12.011
  6. 6. Tsolas N., Yetter R.A. // Ibid. 2017. V. 176. P. 534; https://doi.org/10.1016/j.combustflame.2016.10.022
  7. 7. Bityurin V.A., Bocharov A.N., Filimonova E.A., Klimov A.I. // Proc. 15 Intern. Conf. on Gas Discharges and their Applications / Ed. Bordage et al. Toulouse: GD Local Organizing Committee, 2004. P. 973.
  8. 8. Filimonova E.A. // J. Phys. D: Appl. Phys. 2015. V. 48. 015201; https://doi.org/10.1088/0022-3727/48/1/015201
  9. 9. Филимонова Е.А., Амиров Р.Х. // Физика плазмы. 2001. Т. 27. № 8. С. 750.
  10. 10. Filimonova E.A., Kim Y., Hong S.H., Song Y.H. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 2795.
  11. 11. Железняк М.Б., Филимонова Е.А. // Теплофизика высоких температур. 1998. Т. 36. №. 4. С. 557.
  12. 12. Филимонова Е.А., Амиров Р.Х., Ким Х.Т., Парк И.Х. // Хим. физика. 2000. Т. 19. №. 9. С. 75.
  13. 13. Filimonova E., Bocharov A. Bityurin V. // Fuel. 2018. V. 228. P. 309.https://doi.org/10.1016/j.fuel.2018.04.124
  14. 14. Manion J.A., Huie R.E., Levin R.D. et al. NIST Chemical Kinetics Database, NIST Standard Reference Database 17. Ver. 7.0 (Web Version). Release 1.6.8. Data version 2015.09. Gaithersburg, Maryland: National institute of standards and technology, 2018; https://kinetics.nist.gov/kinetics/
  15. 15. Басевич В.Я., Веденеев В.И., Фролов С.М., Романович Л.Б. // Хим. физика. 2006. Т. 25. № 11. С. 87.
  16. 16. Baker J.A., Skinner G.B. // Combust. and Flame. 1972. V. 19. P. 347.
  17. 17. Hidaka Y., Nishimori T., Sato K. et al. // Ibid. 1999. V. 117. P. 755.
  18. 18. Brown C.J., Thomas, G.O. // Ibid. 1999. V. 117. P. 861.
  19. 19. Wang H., Davis S.G., Laskin A., Egolfopoulos F., Law C.K. USC Mech Ver. II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds, 2007; https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/ USC_Mech%20II.htm
  20. 20. Битюрин В.А., Бочаров А.Н. // Изв. РАН. МЖГ. 2006. № 5. С. 188.
  21. 21. Kiverin A.D., Minaev K.O., Yakovenko I.S. // Combust. and Flame. 2020. V. 221. P. 420; https://doi.org/10.1016/j.combustflame.2020.08.013
  22. 22. Михалкин В.Н., Сумской С.И., Тереза А.М. и др. // Хим. физика. 2022. Т. 41. № 8. С. 3; https://doi.org/10.31857/S0207401X2208009X
  23. 23. Киверин А.В., Минаев К.О., Яковенко О.С. // Хим. физика. 2020. Т. 39. № 8. С. 16; https://doi.org/10.31857/S0207401X20080051
  24. 24. Westbrook C.K., Dryer F.L., Schug K.E. // Proc. 19th Sympos. (Intern.) on Combust. Pittsburgh: The Combust. Inst., 1982. V. 19. № 1. P. 153.
  25. 25. Konnov A.A., Mohammad A., Kishore V.R. et al. // Prog. Energy Combust. Sci. 2018. V. 68. P. 197; https://doi.org/10.1016/j.pecs.2018.05.003
  26. 26. Egolfopoulos F.N., Zhu D.L., Law C.K. // Proc. 23th Sympos. (Intern.) on Combust. Pittsburgh: The Combust. Inst., 1991. V. 23. № 1. P. 471; https://doi.org/10.1016/S0082-0784 (06)80293-6
  27. 27. Hassan M.I., Aung K.T., Kwon K.C., Faeth G.M. // J. Propul. Power. 1994. V. 14. P. 479.
  28. 28. Jomaas G., Zheng X.L., Zhu D.L., Law C.K. // Proc. Combust. Inst. 2006. V. 30. P. 193.
  29. 29. Martz J.B., Lavoie G.A., Im H.G. et al. // Combust. and Flame. 2012. V. 159. P. 2077; https://doi.org/10.1016/j.combustflame.2012.01.011
  30. 30. Тереза А.М., Агафонов Г.Л., Бетев А.С., Медведев С.П. // Хим. физика. 2020. Т. 39. № 12. С. 29; https://doi.org/10.31857/S0207401X20120158
  31. 31. Филимонова Е.А. Кинетика процессов горения, конверсии оксидов азота и углеводородов, стимулированных наносекундными разрядами. Дис. … д-ра физ.-мат. наук. М.: ОИВТ РАН, 2021; https://jiht.ru/science/dissert-council/diss_texts/Filimonova.pdf
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library