RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Method of splitting polarization coordinates for description of ultrafast multistage electron transfer in a non-debye medium

PII
10.31857/S0207401X24010017-1
DOI
10.31857/S0207401X24010017
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 1
Pages
3-12
Abstract
A method for constructing the space of medium states in reactions of ultrafast multistage intramolecular electron transfer in media with several relaxation times is developed. The method uses the splitting of polarization coordinates into relaxation components, and is a generalization of two previously developed approaches used (1) to describe multistage reactions, and (2) to consider multicomponent relaxation. Within the suggested generalized scheme, a model of charge transfer in a three-center molecular system in the environment with a two-component relaxation function is considered, an algorithm for constructing the diabatic free energy surfaces of electronic states is described, a system of equations for the evolution of the distribution functions is written. The results of the general model are shown to reproduce well-known solutions in particular cases.
Keywords
фотоиндуцированный перенос заряда неравновесные реакции макро-молекулярные системы недебаевская полярная среда
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Kuznetsov A.M., Ulstrup J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory. Wiley, 1999.
  2. 2. Blumberger J. // Chem. Rev. 2015. V. 115. № 20. P. 11191: https://doi.org/10.1021/acs.chemrev.5b00298
  3. 3. Fukuzumi S. Electron Transfer: Mechanisms and Applications. Wiley-VCH Verlag, 2020; https://doi.org/10.1002/9783527651771
  4. 4. Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
  5. 5. Zusman L.D. // Chem. Phys. 1980. V. 49. № 2. P. 295; https://doi.org/10.1016/0301-0104 (80)85267-0
  6. 6. Barzykin A. V., Frantsuzov P. A., Seki K. et al. // Adv. Chem. Phys. 2002. V. 123. P. 511; https://doi.org/10.1002/0471231509.ch9
  7. 7. Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer: Theory and Applications. Wiley, 2018.
  8. 8. Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C 2016 V. 29. P. 48; https://doi.org/10.1016/j.jphotochemrev.2016.11.001
  9. 9. Cho M., Silbey R.J. // J. Chem. Phys. 1995. V. 103. P. 595; https://doi.org/10.1063/1.470094
  10. 10. Najbar J., Tachiya M. // J. Photochem. Photobiol. 1996. V. 95. P. 51; https://doi.org/10.1016/1010-6030 (95) 04232-6
  11. 11. Khokhlova S.S., Mikhailova V.A., Ivanov A.I. // J. Chem. Phys. 2006. V. 124. P. 114507; https://doi.org/10.1063/ 1.2178810
  12. 12. Newton M.D. // Isr. J. Chem. 2004. V. 44. P. 83; https://doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
  13. 13. Hilczer M., Tachiya M. // J. Phys. Chem. 1996. V. 100. P. 8815; https://doi.org/10.1021/jp953213x
  14. 14. Motylewski T., Najbar J., Tachiya M. // Chem. Phys. 1996. V. 212. P. 193; https://doi.org/10.1016/S0301-0104 (96)00175-9
  15. 15. Tang J., Norris J.R. // J. Chem. Phys. 1994. V. 101. P. 5615; https://doi.org/10.1063/1.467348
  16. 16. Feskov S.V., Ivanov A.I. // Chem. Phys. 2016. V. 478. P. 164; https://doi.org/10.1016/j.chemphys.2016.03.013
  17. 17. Феськов С.В., Иванов А.И. // ЖФХ. 2016. Т. 90. № 1. С. 97. https://doi.org/10.7868/S0044453716010106
  18. 18. Базлов С.В., Феськов С.В., Иванов А.И. // Хим. физика. 2017. Т. 36. № 3. С. 39; https://doi.org/10.7868/S0207401X17030025
  19. 19. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C 2018. V. 122. P. 25247; https://doi.org/ 10.1021/acs.jpcc.8b09097
  20. 20. Feskov S.V., Ivanov A.I. // J. Chem. Phys. 2018. V. 148. P. 104107; https://doi.org/ 10.1063/1.5016438
  21. 21. Wallin S., Monnereau C., Blart E. et al. // J. Phys. Chem. A 2010. V. 114. P. 1709; https://doi.org/10.1021/jp907824d
  22. 22. Robotham B., Lastman K.A., Langford S.J. et al. // J. Photochem. Photobiol. A. 2013. V. 251. P. 167; https://doi.org/10.1016/j.jphotochem.2012.11.002
  23. 23. LeBard D.N., Martin D.R., Lin S. et al. // Chem. Sci. 2013. V. 4. P. 4127; https://doi.org/10.1039/C3SC51327K
  24. 24. Савинцева Л.А., Авдошин А.А., Игнатов С.К. // Хим. физика. 2022. Т. 41. № 6. С. 55; https://doi.org/ 10.31857/S0207401X22060103
  25. 25. Громов С.П., Чибисов А.К., Алфимов М.В. // Хим. физика. 2021. Т. 40. № 4. С. 9; https://doi.org/ 10.31857/S0207401X21040099
  26. 26. Островский М.А., Надточенко В.А. // Хим. физика. 2021. Т. 40. № 4. С. 76; https://doi.org/10.31857/S0207401X21040117
  27. 27. Гайдамака С.Н., Гладченко М.А., Мурыгина В.П. // Хим. физика. 2020. Т. 39. № 2. С. 85; https://doi.org/ 10.31857/S0207401X2002003X
  28. 28. Zusman L.D. // Chem. Phys. 1988. V. 119. P. 51; https://doi.org/10.1016/0301-0104 (88)80005-3
  29. 29. Феськов С.В., Юданов В.В. // ЖФХ. 2017. Т. 91. № 9. С. 1600; https://doi.org/10.7868/S0044453717090126
  30. 30. Jimenez R., Fleming G.R., Kumar P.V. et al. // Nature. 1994. V. 369. P. 471; https://doi.org/10.1038/369471a0
  31. 31. Maroncelli M., Kumar V.P., Papazyan A. // J. Phys. Chem. 1993. V. 97. P. 13; https://doi.org/10.1021/j100103a004
  32. 32. Nazarov A.E., Ivanov A.I., Rosspeintner A. et al. // J. Mol. Liq. 2022. V. 360. P. 119387; https://doi.org/10.1016/j.molliq.2022.119387
  33. 33. Иванов А.И., Майгуров А. // ЖФХ. 2003. Т. 77. С. 297.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library