- PII
- 10.31857/S0207401X24010017-1
- DOI
- 10.31857/S0207401X24010017
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 1
- Pages
- 3-12
- Abstract
- A method for constructing the space of medium states in reactions of ultrafast multistage intramolecular electron transfer in media with several relaxation times is developed. The method uses the splitting of polarization coordinates into relaxation components, and is a generalization of two previously developed approaches used (1) to describe multistage reactions, and (2) to consider multicomponent relaxation. Within the suggested generalized scheme, a model of charge transfer in a three-center molecular system in the environment with a two-component relaxation function is considered, an algorithm for constructing the diabatic free energy surfaces of electronic states is described, a system of equations for the evolution of the distribution functions is written. The results of the general model are shown to reproduce well-known solutions in particular cases.
- Keywords
- фотоиндуцированный перенос заряда неравновесные реакции макро-молекулярные системы недебаевская полярная среда
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Kuznetsov A.M., Ulstrup J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory. Wiley, 1999.
- 2. Blumberger J. // Chem. Rev. 2015. V. 115. № 20. P. 11191: https://doi.org/10.1021/acs.chemrev.5b00298
- 3. Fukuzumi S. Electron Transfer: Mechanisms and Applications. Wiley-VCH Verlag, 2020; https://doi.org/10.1002/9783527651771
- 4. Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
- 5. Zusman L.D. // Chem. Phys. 1980. V. 49. № 2. P. 295; https://doi.org/10.1016/0301-0104 (80)85267-0
- 6. Barzykin A. V., Frantsuzov P. A., Seki K. et al. // Adv. Chem. Phys. 2002. V. 123. P. 511; https://doi.org/10.1002/0471231509.ch9
- 7. Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer: Theory and Applications. Wiley, 2018.
- 8. Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C 2016 V. 29. P. 48; https://doi.org/10.1016/j.jphotochemrev.2016.11.001
- 9. Cho M., Silbey R.J. // J. Chem. Phys. 1995. V. 103. P. 595; https://doi.org/10.1063/1.470094
- 10. Najbar J., Tachiya M. // J. Photochem. Photobiol. 1996. V. 95. P. 51; https://doi.org/10.1016/1010-6030 (95) 04232-6
- 11. Khokhlova S.S., Mikhailova V.A., Ivanov A.I. // J. Chem. Phys. 2006. V. 124. P. 114507; https://doi.org/10.1063/ 1.2178810
- 12. Newton M.D. // Isr. J. Chem. 2004. V. 44. P. 83; https://doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
- 13. Hilczer M., Tachiya M. // J. Phys. Chem. 1996. V. 100. P. 8815; https://doi.org/10.1021/jp953213x
- 14. Motylewski T., Najbar J., Tachiya M. // Chem. Phys. 1996. V. 212. P. 193; https://doi.org/10.1016/S0301-0104 (96)00175-9
- 15. Tang J., Norris J.R. // J. Chem. Phys. 1994. V. 101. P. 5615; https://doi.org/10.1063/1.467348
- 16. Feskov S.V., Ivanov A.I. // Chem. Phys. 2016. V. 478. P. 164; https://doi.org/10.1016/j.chemphys.2016.03.013
- 17. Феськов С.В., Иванов А.И. // ЖФХ. 2016. Т. 90. № 1. С. 97. https://doi.org/10.7868/S0044453716010106
- 18. Базлов С.В., Феськов С.В., Иванов А.И. // Хим. физика. 2017. Т. 36. № 3. С. 39; https://doi.org/10.7868/S0207401X17030025
- 19. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C 2018. V. 122. P. 25247; https://doi.org/ 10.1021/acs.jpcc.8b09097
- 20. Feskov S.V., Ivanov A.I. // J. Chem. Phys. 2018. V. 148. P. 104107; https://doi.org/ 10.1063/1.5016438
- 21. Wallin S., Monnereau C., Blart E. et al. // J. Phys. Chem. A 2010. V. 114. P. 1709; https://doi.org/10.1021/jp907824d
- 22. Robotham B., Lastman K.A., Langford S.J. et al. // J. Photochem. Photobiol. A. 2013. V. 251. P. 167; https://doi.org/10.1016/j.jphotochem.2012.11.002
- 23. LeBard D.N., Martin D.R., Lin S. et al. // Chem. Sci. 2013. V. 4. P. 4127; https://doi.org/10.1039/C3SC51327K
- 24. Савинцева Л.А., Авдошин А.А., Игнатов С.К. // Хим. физика. 2022. Т. 41. № 6. С. 55; https://doi.org/ 10.31857/S0207401X22060103
- 25. Громов С.П., Чибисов А.К., Алфимов М.В. // Хим. физика. 2021. Т. 40. № 4. С. 9; https://doi.org/ 10.31857/S0207401X21040099
- 26. Островский М.А., Надточенко В.А. // Хим. физика. 2021. Т. 40. № 4. С. 76; https://doi.org/10.31857/S0207401X21040117
- 27. Гайдамака С.Н., Гладченко М.А., Мурыгина В.П. // Хим. физика. 2020. Т. 39. № 2. С. 85; https://doi.org/ 10.31857/S0207401X2002003X
- 28. Zusman L.D. // Chem. Phys. 1988. V. 119. P. 51; https://doi.org/10.1016/0301-0104 (88)80005-3
- 29. Феськов С.В., Юданов В.В. // ЖФХ. 2017. Т. 91. № 9. С. 1600; https://doi.org/10.7868/S0044453717090126
- 30. Jimenez R., Fleming G.R., Kumar P.V. et al. // Nature. 1994. V. 369. P. 471; https://doi.org/10.1038/369471a0
- 31. Maroncelli M., Kumar V.P., Papazyan A. // J. Phys. Chem. 1993. V. 97. P. 13; https://doi.org/10.1021/j100103a004
- 32. Nazarov A.E., Ivanov A.I., Rosspeintner A. et al. // J. Mol. Liq. 2022. V. 360. P. 119387; https://doi.org/10.1016/j.molliq.2022.119387
- 33. Иванов А.И., Майгуров А. // ЖФХ. 2003. Т. 77. С. 297.