RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Quantum-chemical calculations of the enthalpy of formation for 5/6/5 tricyclic tetrazine derivatives annelated with nitrotriazoles

PII
10.31857/S0207401X24010026-1
DOI
10.31857/S0207401X24010026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 1
Pages
13-23
Abstract
The paper presents the study of the calculated physicochemical properties of new high-energy 5/6/5 tricyclic structures, which are 1,2,3,4- or 1,2,4,5-tetrazines, fused with a pair of 1H-1,2,4-, 4H-1,2,4- or 1H-1,2,3-triazoles. Values of the enthalpy of formation in the gaseous phase have been determined by high-performance quantum-chemical calculations (within Gaussian 09 program package) using various methods for solving the stationary Schrödinger equation, including G4, G4MP2, ωB97XD/aug-cc-pVTZ, CBS-APNO, CBS-QB3, CBS-4M, B3LYP/6-311+G(2d,p), M062X/6-311+G(2d,p). The results of calculations obtained by the methods of atomization and isogyric reactions have been analysed. Various calculation methods have been compared in terms of accuracy and time consumption.
Keywords
квантовохимические расчеты энтальпия образования высокоэнергетические материалы
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Yin P., Zhang Q., Shreeve J.M. // Acc. Chem. Res. 2016. V. 49. № 1. P. 4; https://doi.org/10.1021/acs.accounts. 5b00477
  2. 2. Qu Y., Babailov S.P. // J. Mater. Chem. A. 2018. V. 6. P. 1915; https://doi.org/10.1039/C7TA09593G
  3. 3. Yongjin C., Shuhong B. // Johnson Matthey Technol. Rev. 2019. V. 63. P. 51; https://doi.org/10.1595/205651319x15421043166627
  4. 4. Fershtat L.L., Makhova N.N. // ChemPlusChem. 2020. V. 85. № 1. P. 12; https://doi.org/10.1002/cplu. 201900542
  5. 5. Gao H., Zhang Q., Shreeve J.M. // J. Mater. Chem. A. 2020. V. 8. P. 4193; https://doi.org/10.1039/C9TA12704F
  6. 6. Zhang J., Zhou J., Bi F., Wang B. // Chin. Chem. Lett. 2020. V. 31. № 9. P. 2375; https://doi.org/10.1016/j.cclet.2020.01.026
  7. 7. Zhou J., Zhang J. L., Wang B. Z. et al. // FirePhysChem. (China). 2022. V. 2. № 2. Р. 83; https://doi.org/10.1016/j.fpc.2021.09.005
  8. 8. Tang J., Yang H., Cui Y., Cheng G. // Mater. Chem. Front. 2021. V. 5. P. 7108; https://doi.org/10.1039/D1QM00916H
  9. 9. Churakov A.M., Voronin A.A., Klenov M.S., Tartakovsky V.A. Other Tetrazines and Pentazines in Comprehensive Heterocyclic Chemistry IV / Eds. Black D.S., Cossy J., Stevens C.V. Amsterdam: Elsevier Science, 2022. V. 9. P. 640; https://doi.org/10.1016/B978-0-12-818655-8.00064-0
  10. 10. Злотин С.Г., Далингер И.Л., Махова Н.Н., Тартаковский В.А. // Успехи химии. 2020. Т. 89. С. 1–54; https://doi.org/10.1070/RCR4908
  11. 11. Zlotin S.G., Churakov A.M., Egorov M.P. et al. // Mendeleev Commun. 2021. V. 31. P. 731; https://doi.org/10.1016/j.mencom.2021.11.001
  12. 12. Швец А.О., Коннов А.А., Кленов М.P. и др. // Изв. АН. Cер. хим. 2020. Т. 69. С. 739; https://doi.org/10.1007/s11172-020-2826-3
  13. 13. Гуляев Д.А., Кленов М.С., Чураков А.М. и др. // Там же. 2021. Т. 70. С. 1599; https://doi.org/10.1007/s11172-021-3256-6
  14. 14. Зюзин И.Н., Волохов В.М., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 9. С. 18. https://doi.org/ 10.31857/S0207401X21090107
  15. 15. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2021. Т. 40. № 7. С. 24; https://doi.org/ 10.31857/S0207401X20030061
  16. 16. Захаров В.В., Чуканов Н.В., Шилов Г.В. и др. // Хим. физика. 2021. Т. 40. № 7. С. 35; https://doi.org/10.31857/S0207401X21070128
  17. 17. Fershtat L.L. // FireFhysChem. (China). 2023. V. 3. № 1. P. 78; https://doi.org/10.1016/j.fpc.2022.og005
  18. 18. Chavez D.E., Bottaro J.C., Petrie M., Parrish D.A. // Angew. Chem. Intern. Ed. 2015. V. 54. P. 12973; https://doi.org/10.1002/anie.201506744
  19. 19. Tang Y., Kumar D., Shreeve J.M. // J. Am. Chem. Soc. 2017. V. 139. P. 13684; https://doi.org/10.1021/jacs. 7b08789
  20. 20. Tang Y.X., He C.L., Yin P. et al. // Eur. J. Org. Chem. 2018. V. 19. P. 2273; https://doi.org/10.1002/ejoc. 201800347
  21. 21. Rudakov G.F. et al. // Chem. Eng. J. 2022. V. 450. P. 138073; https://doi.org/10.1016/j.cej.2022.138173
  22. 22. Volokhov V.M., Amosova E.S., Volokhov A.V. et al. // Comput. Theor. Chem. 2022. V. 1209. P. 113608; https://doi.org/10.1016/j.comptc.2022.113608
  23. 23. Curtiss L.A., Redfern P.C., Raghavachari K. // J. Chem. Phys. 2007. V. 126. P. 084108; https://doi.org/10.1063/ 1.2436888
  24. 24. Nirwan A., Ghule V.D. // Theor. Chem. Acc. 2018. V. 137. P. 1; https://doi.org/10.1007/s00214-018-2300-6
  25. 25. Suntsova M.A.., Dorofeeva O.V. // J. Chem. Eng. Data. 2016. V. 61. P. 313; https://doi.org/10.1021/acs.jced. 5b00558
  26. 26. Glorian J., Han K.T., Braun S., Baschung B. // Propellants Explos. Pyrotech. 2021. V. 46. P. 124; https://doi.org/10.1002/prep.202000187
  27. 27. Irikura K.K., Frurip D.J. // Computational Thermochemistry. ACS Symposium Series 677. Washington: Amer. Chem. Soc., 1998.
  28. 28. Parallel Computational Technologies. PCT 2020. Ser. Communications in Computer and Information Science / Eds. Sokolinsky L., Zymbler M. Cham: Springer, 2020. V. 1263. P. 291; https://doi.org/10.1007/ 978-3-030-55326-5_21
  29. 29. Supercomputing. RuSCDays 2020. Ser. Communications in Computer and Information Science / Eds Voevodin V., Sobolev S.. Cham:, Springer, 2020. V. 1331. P. 310; https://doi.org/10.1007/978-3-030-64616-5_27
  30. 30. Лемперт Д.Б., Волохов В.М., Зюзин И.Н. и др. // Журн. прикл. химии. 2020. Т. 93. № 12. С. 1756; https://doi.org/10.31857/S0044461820120075
  31. 31. Volokhov V.M., Amosova E.S., Volokhov A.V. et al. // Supercomput. Front. Innov. (Chelyabinsk). 2020. V. 7. № 4. P. 68; https://doi.org/10.14529/jsfi200406
  32. 32. Волохов В.М., Зюбина T.С., Волохов А.В. и др. // Хим. физика. 2021. Т. 40. № 1. С. 3; https://doi.org/ 10.31857/S0207401X21010131
  33. 33. Волохов В.М., Зюбина T.С., Волохов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. С. 69; https://doi.org/ 10.31857/S0044457X21010116
  34. 34. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648; https://doi.org/10.1063/1.464913
  35. 35. Johnson B.J., Gill P.M.W., Pople J.A. // Ibid. P. 5612; https://doi.org/10.1063/1.464913
  36. 36. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215; https://doi.org/10.1007/s00214-007-0310-x
  37. 37. Chai J.-D., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615; https://doi.org/10.1039/B810189B
  38. 38. Curtiss L.A., Redfern P.C., Raghavachari K. // J. Chem. Phys. 2007. V. 127. P. 124105; https://doi.org/10.1063/ 1.2770701
  39. 39. Curtiss L.A., Redfern P.C., Raghavachari K. // Comput. Mol. Sci. 2011. V. 1. P. 810; https://doi.org/10.1002/wcms.59
  40. 40. Montgomery Jr. J.A., Frisch M.J. et al. // J. Chem. Phys., 2000. V. 112. P. 6532; https://doi.org/10.1063/1.481224
  41. 41. Petersson G.A., Malick D.K., Wilson W.G. et al. // Ibid. 1998. V. 109. P. 10570; https://doi.org/10.1063/1.477794
  42. 42. Byrd E.F., Rice B.M. // J. Phys. Chem. A. 2006. V. 110. P. 1005; https://doi.org/10.1021/jp0536192
  43. 43. Byrd E.F., Rice B.M. // Ibid. 2009. V. 113. P. 5813; https://doi.org/10.1021/jp806520b
  44. 44. Kiselev V.G., Goldsmith C.F. // Ibid. 2019. V. 123. P. 9818; https://doi.org/10.1021/acs.jpca.9b08356
  45. 45. Karton A., Martin J.M.L. // J. Chem. Phys. 2012. V. 136. P. 124114. https://doi.org/10.1063/1.3697678
  46. 46. Ghule V.D. // Comput. Theor. Chem. 2012. V. 992. P. 92; https://doi.org/10.1016/j.comptc.2012.05.007
  47. 47. Mann J., Ghule V.D., Dharavath S. // J. Phys. Chem. A. 2023. V. 127. P. 6467; https://doi.org/10.1021/0021-9614 (89)90060-8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library