RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Mechanism of Sm2MoO6 phase formation from a mechanically activated oxide mixture

PII
10.31857/S0207401X24010108-1
DOI
10.31857/S0207401X24010108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 1
Pages
84-91
Abstract
The mechanism of phase formation from (1) the initial and (2) the mechanically activated mixture of Sm2O3 + + MoO3 oxides has been studied by DSC in an oxygen atmosphere. It is shown that different mechanisms of samarium oxymolybdate synthesis are realised in these two cases. As a result of the mechanochemical action at room temperature, a nano-sized mixture of Sm2(MoO4)3 and Sm2O3 was obtained. Upon heating, the first stage is the crystallisation of Sm2(MoO4)3, whose interaction with Sm2O3 in the second stage at 900 °C leads to the synthesis of oxymolybdate Sm2MoO6 with the scheelite structure, and this structure type is stable up to 1400 °C. The kinetic experiment in a DSC cell shows only an apparent similarity of the phase formation mechanism with a decrease of the main exoeffects by 70 °C for a mechanically activated mixture of oxides. At the same time, the study of the mechanism of phase formation by isothermal exposure at different temperatures reveals the main advantages of ceramic synthesis from an activated oxide mixture: partially mechanosynthesis of the intermediate compound Sm2(MoO4)3 takes place at room temperature; the high degree of interaction between the mechanically activated oxides allows single phase ceramics to be synthesised in a single step over a wide temperature range. The total conductivity of Sm2MoO6 with a scheelite structure, which turned out to be p-type (1 · 10−6 S/cm at 600 °C), was studied.
Keywords
механоактивация фазообразование методы РФА и ДСК оксимолибдат самария дырочная проводимость
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Blasse G. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 1488.
  2. 2. Brixner L.H., Sleight A.W., Licis M.S. // J. Sol. State Chem. 1972. V. 5. № 2. P. 186.
  3. 3. Xue J. S., Antonio M. R., Soderholm L. // Chem. Mater. 1995. V. 7. P. 333.
  4. 4. Mani K.P., Vimal G., Biju P.R., Joseph C. et al. // ECS J. Solid State Sci. Technol. 2015. V. 4. № 5. P. 67.
  5. 5. Selvakumar K., Oh T.H., Vijayaraj T., Gokul Raja K. et al. // Colloids Surf. A: 2022. V. 650. P. 129545.
  6. 6. Li Q., Thangadurai V. // J. Power Sources. 2011. V. 196. № 1. P. 169.
  7. 7. Яновский В.К., Воронкова В.И. // ФТТ. 1977. № 19. С. 3318.
  8. 8. Orlova E.I., Morkhova, Y.A., Egorova, A.V. et al. // J. Phys. Chem. C. 2022. V. 126. № 23. P. 9623
  9. 9. Chychko A., Teng L., Seetharaman S. // Steel Res. Int. 2010. V. 81. № 9. P. 784.
  10. 10. Shlyakhtina A.V., Avdeev M., Lyskov N.V. et al. // Dalton Trans. 2020. V. 49. № 9. P. 2833.
  11. 11. Шляхтина А.В., Колбанев И. В., Щербакова Л. Г. // Хим. физика. 1998. Т. 17. № 8. С. 57.
  12. 12. Шляхтина А.В., Колбанев И. В., Щербакова Л. Г. // Хим. физика. 2001. Т. 20. С. 94.
  13. 13. Kolbanev I. V., Shlyakhtina A. V., Degtyarev E. N. et al. // J. Amer. Ceram. Soc. 2021. V. 104. № 11. P. 5698.
  14. 14. Shlyakhtina A.V., Kolbanev I.V., Degtyarev E.N. et al. // Solid State Ionics. 2018. V. 320. P. 272.
  15. 15. Баян Е.М., Лупейко Т.Г., Пустовая Л.Е. // Хим. физика. 2019. Т. 38. № 4. С. 84.
  16. 16. Мамсурова Л.Г., Трусевич Н.Г., Вишнев А.А. и др. // Хим. физика. 2020. Т. 39. № 12. С. 66.
  17. 17. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н. и др. // Хим. физика. 2021. Т. 40. № 6. С. 18.
  18. 18. Алымов М. И., Сеплярский Б.С., Вадченко С.Г. и др. // Хим. физика. 2021. Т.40. № 4. С. 85.
  19. 19. Schustereit T., Müller S.L., Schleid T., et al. // Crystals. 2011. V. 1. № 4. P. 244.
  20. 20. Чебышев К.А., Бережная Т.С., Чайка Э.В. и др. // Химические проблемы современности 2022. Сб. матер. VI Междунар. науч. конф. студентов, аспирантов и молодых ученых, Донецк: Донецкий национ. ун-т, 2022. С. 70.
  21. 21. Bondarenko T.N., Uvarov V.N., Borisenko S.V. et al. // J. Korean Phys. Soc. 1998. V. 32. P. S65.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library