- PII
- 10.31857/S0207401X24020036-1
- DOI
- 10.31857/S0207401X24020036
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 2
- Pages
- 17-32
- Abstract
- Linkage isomerization NO2-ONO (nitro-nitrito) in the complex cation [Co(NH3)5NO2]2+ is a well-studied classical reaction. It is believed that the photoisomerization of the nitro form to nitrito in the crystalline phase achieves complete transformation at low temperature, while the reverse transformation proceeds as a first-order thermal intramolecular reaction upon heating of the crystals. To date, there is no information about the possibility of reverse photoisomerization. In this work, photoisomerization in [Co(NH3)5NO2]Cl(NO3) crystals is investigated by the analysis of crystal deformation caused by the transformation at different wavelengths. A change in the lattice parameters during the transformation leads to reliably measurable elongation and bending of acicular crystals. It is shown that the limiting elongation of the crystal under prolonged irradiation depends on the wavelength, which proves the reversibility of photoisomerization. The quantum yield of the reverse reaction is estimated to be 0.04 of the quantum yield of the direct reaction.
- Keywords
- связевая изомеризация NO2 нитро-нитрито-фотоизомеризация механический отклик на фотохимическую реакцию
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Gibbs W., Genth F.A. Researches on the Ammonia-Cobalt Bases. Washington: Smithsonian Institution, 1856.
- 2. Jörgensen S.M. // Z. Anorg. Chem. 1894. V. 5. № 1. P. 147.
- 3. Kauffman C.B. // Coord. Chem. Rev. 1973. V. 11. № 2. P. 161.
- 4. Boldyreva E.V. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 1994. V. 242. № 1. P. 17.
- 5. Болдырева E.B. // Координац. химия. 2001. Т. 27. № 5. С. 323.
- 6. Басоло Ф., Пирсон Р. Механизмы неорганических реакций: изучение комплексов металлов в растворе. М.: Мир, 1971.
- 7. Scandola F., Bartocci C., Scandola M.A. // J. Phys. Chem. 1974. V. 78. № 6. P. 572.
- 8. Balzani V., Ballardini R., Sabbatini N., Moggi L. // Inorg. Chem. 1968. V. 7. № 7. P. 1398.
- 9. Kubota M., Ohba S. // Acta Crystallogr., Sect. B. 1992. V. 48. № 5. P. 627.
- 10. Heyns A.M., de Waal D. // Spectrochim. Acta. Part A. 1989. V. 45. № 9. P. 905.
- 11. Eslami A. // Thermochim. Acta. 2004. V. 409. № 2. P. 189.
- 12. Eslami A., Hasani N. // Thermochim. Acta. 2014. V. 575. P. 114.
- 13. Chizhik S., Sidelnikov A., Zakharov B., Naumov P., Boldyreva E. // Chem. Sci. 2018. V. 9. № 8. P. 2319.
- 14. Adell B. // Z. Anorg. Allg. Chem. 1952. V. 271. № 1–2. P. 49.
- 15. Болдырева Е.В., Сидельников А.А., Чупахин А.П. и др. // ДАН СССР. 1984. Т. 277. № 4. С. 893.
- 16. Болдырева Е.В., Сидельников А.А. // Изв. СО АН СССР. Сер. хим. наук. 1987. Т. 5. С. 139.
- 17. Boldyreva E.V. // Solid State Ionics. 1997. V. 101–103. P. 843.
- 18. Boldyrev V.V., Boldyreva E.V. Reactivity of Molecular Solids. Chichester, England: John Wiley & Sons, 1999.
- 19. Luty T., Eckhardt C.J. // J. Amer. Chem. Soc. 1995. V. 117. № 9. P. 2441.
- 20. Sidelnikov A.A., Chizhik S.A., Zakharov B.A., Chupakhin A.P., Boldyreva E.B. // CrystEngComm. 2016. V. 18. № 38. P. 7276.
- 21. Grenthe I., Nordin E. // Inorg. Chem. 1979. V. 18. № 7. P. 1869.
- 22. Ciofini I., Adamo C. // J. Phys. Chem. A. 2001. V. 105. № 6. P. 1086.
- 23. Johnson D.A., Pashman K.A. // Inorg. Nucl. Chem. Lett. 1975. V. 11. № 1. P. 23.
- 24. Muya J.T., Chung H., Lee S.U. // RSC Adv. 2018. V. 8. № 6. P. 3328.
- 25. Muya J.T., Meher B.R., Sahoo S.C., Chung H. // Intern. J. Quantum Chem. 2019. V. 119. № 14. P. e25929.
- 26. Jackson W.G. // J. Chem. Educ. 1991. V. 68. № 11. P. 903.
- 27. Phillips W.M., Choi S., Larrabee J.A. // Ibid. 1990. V. 67. № 3. P. 267.
- 28. Masciocchi N., Kolyshev A., Dulepov V., Boldyreva E., Sironi A. // Inorg. Chem. 1994. V. 33. № 12. P. 2579.
- 29. Beattie I.R., Satchell D.P.N. // Trans. Faraday Soc. 1956. V. 52. P. 1590.
- 30. Naumov P., Chizhik S., Panda M.K., Nath N.K., Boldyreva E. // Chem. Rev. 2015. V. 115. № 22. P. 12440.
- 31. Nath N.K., Panda M.K., Sahoo S.C., Naumov P. // CrystEngComm. 2014. V. 16. № 10. P. 1850.
- 32. Commins P., Desta I.T., Karothu D.P., Panda M.K., Naumov P. // Chem. Commun. 2016. V. 52. № 97. P. 13941.
- 33. White T.J. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work. Wiley, 2017. P. 233.
- 34. Naumov P., Karothu D.P., Ahmed E., Catalano L., Commins P. et al. // J. Amer. Chem. Soc. 2020. V. 142. № 31. P. 13256.
- 35. Halabi J.M., Ahmed E., Sofela S., Naumov P. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 5. P. e2020604118.
- 36. Громов C.П., Чибисов А.К., Алфимов М.В. // Хим. физика. 2021. T. 40. № 4. C. 9.
- 37. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
- 38. Hirano A., Kitagawa D., Kobatake S. // CrystEngComm. 2019. V. 21. № 15. P. 2495.
- 39. Kitagawa D., Kobatake S. // J. Phys. Chem. C. 2013. V. 117. № 40. P. 20887.
- 40. Kim T., Zhu L., Mueller L.J., Bardeen C.J. // J. Amer. Chem. Soc. 2014. V. 136. № 18. P. 6617.
- 41. Ahmed E., Chizhik S., Sidelnikov A., Boldyreva E., Naumov P. // Inorg. Chem. 2022. V. 61. № 8. P. 3573.
- 42. Schneider C.A., Rasband W.S., Eliceiri K.W. // Nat. Methods. 2012. V. 9. № 7. P. 671.
- 43. Mayerhöfer T.G., Pahlow S., Popp J. // ChemPhysChem. 2020. V. 21. № 18. P. 2029.