RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Detection of photoreversibility of NO2–ONO linkage isomerization in [Co(NH3)5NO2]Cl(NO3 crystals by the photomechanical response method

PII
10.31857/S0207401X24020036-1
DOI
10.31857/S0207401X24020036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
17-32
Abstract
Linkage isomerization NO2-ONO (nitro-nitrito) in the complex cation [Co(NH3)5NO2]2+ is a well-studied classical reaction. It is believed that the photoisomerization of the nitro form to nitrito in the crystalline phase achieves complete transformation at low temperature, while the reverse transformation proceeds as a first-order thermal intramolecular reaction upon heating of the crystals. To date, there is no information about the possibility of reverse photoisomerization. In this work, photoisomerization in [Co(NH3)5NO2]Cl(NO3) crystals is investigated by the analysis of crystal deformation caused by the transformation at different wavelengths. A change in the lattice parameters during the transformation leads to reliably measurable elongation and bending of acicular crystals. It is shown that the limiting elongation of the crystal under prolonged irradiation depends on the wavelength, which proves the reversibility of photoisomerization. The quantum yield of the reverse reaction is estimated to be 0.04 of the quantum yield of the direct reaction.
Keywords
связевая изомеризация NO2 нитро-нитрито-фотоизомеризация механический отклик на фотохимическую реакцию
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Gibbs W., Genth F.A. Researches on the Ammonia-Cobalt Bases. Washington: Smithsonian Institution, 1856.
  2. 2. Jörgensen S.M. // Z. Anorg. Chem. 1894. V. 5. № 1. P. 147.
  3. 3. Kauffman C.B. // Coord. Chem. Rev. 1973. V. 11. № 2. P. 161.
  4. 4. Boldyreva E.V. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 1994. V. 242. № 1. P. 17.
  5. 5. Болдырева E.B. // Координац. химия. 2001. Т. 27. № 5. С. 323.
  6. 6. Басоло Ф., Пирсон Р. Механизмы неорганических реакций: изучение комплексов металлов в растворе. М.: Мир, 1971.
  7. 7. Scandola F., Bartocci C., Scandola M.A. // J. Phys. Chem. 1974. V. 78. № 6. P. 572.
  8. 8. Balzani V., Ballardini R., Sabbatini N., Moggi L. // Inorg. Chem. 1968. V. 7. № 7. P. 1398.
  9. 9. Kubota M., Ohba S. // Acta Crystallogr., Sect. B. 1992. V. 48. № 5. P. 627.
  10. 10. Heyns A.M., de Waal D. // Spectrochim. Acta. Part A. 1989. V. 45. № 9. P. 905.
  11. 11. Eslami A. // Thermochim. Acta. 2004. V. 409. № 2. P. 189.
  12. 12. Eslami A., Hasani N. // Thermochim. Acta. 2014. V. 575. P. 114.
  13. 13. Chizhik S., Sidelnikov A., Zakharov B., Naumov P., Boldyreva E. // Chem. Sci. 2018. V. 9. № 8. P. 2319.
  14. 14. Adell B. // Z. Anorg. Allg. Chem. 1952. V. 271. № 1–2. P. 49.
  15. 15. Болдырева Е.В., Сидельников А.А., Чупахин А.П. и др. // ДАН СССР. 1984. Т. 277. № 4. С. 893.
  16. 16. Болдырева Е.В., Сидельников А.А. // Изв. СО АН СССР. Сер. хим. наук. 1987. Т. 5. С. 139.
  17. 17. Boldyreva E.V. // Solid State Ionics. 1997. V. 101–103. P. 843.
  18. 18. Boldyrev V.V., Boldyreva E.V. Reactivity of Molecular Solids. Chichester, England: John Wiley & Sons, 1999.
  19. 19. Luty T., Eckhardt C.J. // J. Amer. Chem. Soc. 1995. V. 117. № 9. P. 2441.
  20. 20. Sidelnikov A.A., Chizhik S.A., Zakharov B.A., Chupakhin A.P., Boldyreva E.B. // CrystEngComm. 2016. V. 18. № 38. P. 7276.
  21. 21. Grenthe I., Nordin E. // Inorg. Chem. 1979. V. 18. № 7. P. 1869.
  22. 22. Ciofini I., Adamo C. // J. Phys. Chem. A. 2001. V. 105. № 6. P. 1086.
  23. 23. Johnson D.A., Pashman K.A. // Inorg. Nucl. Chem. Lett. 1975. V. 11. № 1. P. 23.
  24. 24. Muya J.T., Chung H., Lee S.U. // RSC Adv. 2018. V. 8. № 6. P. 3328.
  25. 25. Muya J.T., Meher B.R., Sahoo S.C., Chung H. // Intern. J. Quantum Chem. 2019. V. 119. № 14. P. e25929.
  26. 26. Jackson W.G. // J. Chem. Educ. 1991. V. 68. № 11. P. 903.
  27. 27. Phillips W.M., Choi S., Larrabee J.A. // Ibid. 1990. V. 67. № 3. P. 267.
  28. 28. Masciocchi N., Kolyshev A., Dulepov V., Boldyreva E., Sironi A. // Inorg. Chem. 1994. V. 33. № 12. P. 2579.
  29. 29. Beattie I.R., Satchell D.P.N. // Trans. Faraday Soc. 1956. V. 52. P. 1590.
  30. 30. Naumov P., Chizhik S., Panda M.K., Nath N.K., Boldyreva E. // Chem. Rev. 2015. V. 115. № 22. P. 12440.
  31. 31. Nath N.K., Panda M.K., Sahoo S.C., Naumov P. // CrystEngComm. 2014. V. 16. № 10. P. 1850.
  32. 32. Commins P., Desta I.T., Karothu D.P., Panda M.K., Naumov P. // Chem. Commun. 2016. V. 52. № 97. P. 13941.
  33. 33. White T.J. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work. Wiley, 2017. P. 233.
  34. 34. Naumov P., Karothu D.P., Ahmed E., Catalano L., Commins P. et al. // J. Amer. Chem. Soc. 2020. V. 142. № 31. P. 13256.
  35. 35. Halabi J.M., Ahmed E., Sofela S., Naumov P. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 5. P. e2020604118.
  36. 36. Громов C.П., Чибисов А.К., Алфимов М.В. // Хим. физика. 2021. T. 40. № 4. C. 9.
  37. 37. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
  38. 38. Hirano A., Kitagawa D., Kobatake S. // CrystEngComm. 2019. V. 21. № 15. P. 2495.
  39. 39. Kitagawa D., Kobatake S. // J. Phys. Chem. C. 2013. V. 117. № 40. P. 20887.
  40. 40. Kim T., Zhu L., Mueller L.J., Bardeen C.J. // J. Amer. Chem. Soc. 2014. V. 136. № 18. P. 6617.
  41. 41. Ahmed E., Chizhik S., Sidelnikov A., Boldyreva E., Naumov P. // Inorg. Chem. 2022. V. 61. № 8. P. 3573.
  42. 42. Schneider C.A., Rasband W.S., Eliceiri K.W. // Nat. Methods. 2012. V. 9. № 7. P. 671.
  43. 43. Mayerhöfer T.G., Pahlow S., Popp J. // ChemPhysChem. 2020. V. 21. № 18. P. 2029.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library