RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Aerobic decomposition of dimethylthiourea nitrosyl iron complex in the presence of albimin and glutathione

PII
10.31857/S0207401X24020078-1
DOI
10.31857/S0207401X24020078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 2
Pages
62-72
Abstract
Nitrosyl iron complexes (NICs) are natural “depots” of NO. NICs forms by the interaction of endogenous nitric oxide (NO) and non‒heme [2Fe-2S] proteins. Their synthetic analogues are promising compounds in medicines for the treatment of socially significant diseases. In this paper, the effect of bovine serum albumin (BSA) and reduced glutathione (GSH) on the decomposition of a nitrosyl iron complex with N,N′-dimethylthiourea ligands [Fe(SC(NHCH3)2)2(NO)2]BF4 (complex 1) under aerobic conditions have been investigated. In the absorption spectra complex 1 in the presence of albumin a wide band at 370–410 nm appears, which indicates the coordination of the aerobic decay product of the complex in the hydrophobic pocket of the protein with Cys34 and His39. The quenching of albumin intrinsic fluorescence during titration with complex 1 was studied by fluorescence spectroscopy. The Stern-Vollmer constant K = (2.3 ± 0.2) ∙ 105 М-1 and the Förster radius 22.4 Å were calculated. The UV-spectrum complex 1 in presence of GSH has two peaks at 312 and 363 nm, which respond glutathione binuclear NICs.
Keywords
нитрозильные комплексы железа NO-доноры бычий сывороточный альбумин глутатион УФ-спектроскопия флуоресцентная спектроскопия метод функционала плотности
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Ванин А.Ф. // Соросов. обр. журн. 2001. Т. 7. № 11. С. 7.
  2. 2. Ignarro L.J. // Circulation Res. 2002. V. 90. № 1. P. 21.
  3. 3. Ghimire K., Altmann H.M., Straub A.C. et al. // Amer. J. Physiol. Cell Physiol. 2017. V. 312. P. 254.
  4. 4. Константинова Т.С., Шевченко Т.Ф., Барсков И.В. и др. // Хим. физика. 2021. Т.40. № 2. С. 61.
  5. 5. Needleman P., Johnson JR. Eu. M. // J. Pharm. Exp. Therap. 1973. V. 184. P. 709.
  6. 6. Шуршина А.С., Галина А.Р., Кулиш Е.И. // Хим. физика. 2022. Т. 41. № 4. С. 63.
  7. 7. Pectol D.C., Khan S., Chupik R.B. et al. // Mol. Pharm. 2019. V. 16. P. 3178.
  8. 8. Психа Б.Л., Нешев Н.И., Соколова Е.М. и др. // Хим. физика. 2020. Т. 39. № 7. С. 9.
  9. 9. Саратовских Е.А., Санина Н.А., Мартыненко В.М. и др. // Хим. физика. 2020. Т. 39. № 1. С. 39.
  10. 10. Chazov E.I., Rodnenkov O.V., Zorin A.V. et al. // Nitr. Ox. 2012. V. 26. P. 148.
  11. 11. Sanina N.A., Shmatko N.Y., Korchagin D.V. et al. // J. Coord. Chem. 2016. V. 69. P. 812.
  12. 12. Sanina N.A., Aldoshin S.M., Shmatko N.Y. et al. // Inorg. Chem. Commun. 2014. V. 49. P. 44.
  13. 13. Akentieva N.P., Sanina N.A., Prichodchenko T.R. et al. // Dokl. Biochem. Biophys. 2019. V. 486. P. 238.
  14. 14. Gizatullin A.R., Akentieva N.P., Sanina N.A. et al. // Dokl. Biochem. Biophys. 2018. V. 483. P. 337.
  15. 15. Mumyatova V.A., Kozub G.I., Kondrat’eva T.A. et al. // Russ. Chem. Bull. 2019. V. 68. P. 1025.
  16. 16. Shmatko N.Yu., Korchagin D.V., Shilov G.V. et al. // Polyhedron. 2017. V. 137.
  17. 17. Акентьева Н.П., Санина Н.А., Приходченко Т.Р. и др. // Докл. АН. 2019. Т. 486. № 6. C. 742.
  18. 18. Lewandowska H., Kalinowska M., Brzóska K. et al. // Dalt Trans. 2011. V. 33. P. 8273.
  19. 19. Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A. et al. // Methods. Enzym. 2008. V. 436. P. 445.
  20. 20. Otagiri M., Chuang V.T.G. / Albumin in Medicine. Singapore: Springer, 2016.
  21. 21. Peters J.T. // All About Albumin. 1st ed. N.Y.: Acad. Press, 1995.
  22. 22. André C., Guillaume Y.C. // Talanta. 2004. V. 63. P. 503.
  23. 23. Bal W., Sokołowska M., Kurowska E. et al. // Biochim. Biophys. Acta. 2013. V. 1830. P. 5444.
  24. 24. Patel S.U., Sadler P.J., Tucker A. // J. Amer. Chem. Soc. 1993. V. 115. P. 9285.
  25. 25. Scott B.J., Bradwell A.R. // Clin. Chem. 1983. V. 29. P. 629.
  26. 26. Boese M., Mordvintcev P.I., Vanin A.F. et.al. // Biol. Chem. 1995. V. 270. P. 29244.
  27. 27. Townsend D.M., Tew K.D., Tapiero H. // Biomed. Pharm. 2003. V. 57. P. 145.
  28. 28. Калинина Е.В., Чернов Н.Н., Новичкова М.Д. // Успехи биол. химии. 2014. Т. 54. C. 299.
  29. 29. Pokidova O.V., Emel’yanova N.S., Psikha B.L. et al. // In. Chim. Acta. 2020. V. 502. P. 119369.
  30. 30. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Rev. D.01. 2013.
  31. 31. Banerjee A., Sen S., Paul A. // Chem. A Europ. J. 2018. V. 24. P. 3330.
  32. 32. Emelyanova N.S., Gutsev L.G., Pokidova O.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120453.
  33. 33. Емельянова Н.С., Гуцев Л.Г., Загайнова Е.А. и др. // Изв. РАН. 2022. T. 9. C. 1.
  34. 34. Vanin A.F., Poltorakov A.P., Mikoyan V. D. et al. // Nitr. Ox. 2010. V. 23. P. 136.
  35. 35. Pokidova О.V., Emel’yanova N.S., Kormukhina A. Yu. et al. // Dalt. Trans. 2022. V. 51. P. 6473.
  36. 36. Pokidova О.V., Emel’yanova N.S., Psikha B.L. et al. // J. Mol. Str. 2019. V. 1192. P. 264.
  37. 37. Peterman B.F., Laidler K.J. // Arch. Biochem. Biophys. 1980. V. 199. P. 158.
  38. 38. Lakowicz J.R., Joseph R. Principles of Fluorescence Spectroscopy. USA: Springer, 2006.
  39. 39. Förster T. // Ann. Phys. 1948. V. 437. P. 55.
  40. 40. Chen Y., Barkley M.D. // Biochem. 1998. V. 37. P. 9976.
  41. 41. Mahammed A., Gray H. B., Weaver J. J. et al. // Bioconj. Chem. 2004. V. 15. P. 738.
  42. 42. Pokidova O.V., Luzhkov V.B., Emel’yanova N.S. et al. // Dalt. Trans. 2020. V. 49. P. 2674.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library