ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Влияние различных режимов термической обработки на изменение химического состава и антибактериальную активность пчелиного меда

Код статьи
10.31857/S0207401X24020099-1
DOI
10.31857/S0207401X24020099
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 43 / Номер выпуска 2
Страницы
81-91
Аннотация
Проведен сравнительный анализ химического состава и антибактериальной активности верескового меда (Calluna vulgaris), подвергнутого термообработке при 35–40 °С в течение 12 ч. Выявлен диапазон температур (38–40 °С), при котором наблюдается снижение в меде концентрации H2O2, уменьшение активности D-глюкозо-1-оксидазы и увеличение содержания 5-гидроксиметилфурфурола. Степень химических изменений была прямо пропорциональна температуре и времени термического воздействия. Установлена корреляция между изменениями химического состава и антибактериальной активностью меда в отношении тест-микроорганизмов Escherichia coli (штамм 1257), Staphylococcus aureus (штамм 209-P) и Bacillus cereus (штамм 96). Полученные результаты показали, что нагрев меда до 37 °С даже в течение 12 ч не вызывал нежелательных изменений его химического состава и снижения антибактериальной активности. Таким образом, данный режим можно считать более щадящим и рекомендовать его для использования при проведении термообработки этого пищевого продукта.
Ключевые слова
термическая обработка пероксид водорода 5-гидроксиметилфурфурол ферменты сахара инактивация антибактериальная активность пчелиный мед
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Villacrés-Granda I., Proano A., Coello D. et al. // Food Chem. 2021. V. 365. № 15. P. 130519; https://doi.org/10.1016/j.foodchem.2021.130519
  2. 2. Cagliani L.R., Maestri G., Consonni R. // Food Contr. 2022. V. 133. P. 108574; https://doi.org/10.1016/J.FOODCONT.2021.108574
  3. 3. Seraglio S.K.T., Schulz M., Brugnerotto P. et al. // Food Res. Intern. 2021. V. 143. P. 110268; https://doi.org/10.1016/J.FOODRES.2021.110268
  4. 4. Заикина В.И. Экспертиза меда и способы обнаружения его фальсификации. М.: Издат. дом “Дашков и Ко”, 2012.
  5. 5. Комлацкий В.И., Плотников С.А. // Пчеловодство. 2006. № 2. С. 54.
  6. 6. Черевко Ю.А., Носовицкий П.Б. // Пчеловодство. 2000. № 3. С. 39.
  7. 7. Doner L.W. // J. Sci. Food Agric. 1977. V. 28. P. 443.
  8. 8. Bogdanov S. // Lebensmittel-Wissenschaft und Technologie. 1984. V. 17. P. 74.
  9. 9. Almasaudi S. // Saudi J. Biol. Sci. 2021. V. 28. № 4. P. 2188; https://doi.org/10.1016/j.sjbs.2020.10.017
  10. 10. White J.W., Subers M.H., Schepartz A.I. // Biochim. Biophys. Acta. 1963. V. 7. № 73. P. 57.
  11. 11. Kwakman P.H.S., te Velde A.A., de Boer L. et al. // PLoS One. 2011. V. 6. № 3. P. 1; https://doi.org/10.1371/journal.pone.0017709
  12. 12. Lehmann D.M., Krishnakumar K., Batres M.A. et al. // Access Microbiol. 2019. V. 1. № 10. P. 1; https://doi.org/10.1099/acmi.0.000065
  13. 13. Alygizou A., Grigorakis S., Gotsiou P. et al. // J. Anal. Meth. Chem. 2021. V. 2021. P. 5554305; https://doi.org/10.1155/2021/5554305
  14. 14. Wohlfart G., Witt S., Hendle J. et al. // Acta Cryst., Sect. D: Biol. Crystallogr. 1999. V. 55. P. 969; https://doi.org/10.1107/s0907444999003431
  15. 15. Jones P., Dunford H.B. // J. Theoretical Biol. 1977. V. 69. P. 457.
  16. 16. Brudzynski K. // Food Chem. 2020. V. 1. № 332. P. 127229; https://doi.org/10.1016/j.foodchem.2020.127229
  17. 17. Zámocký M., Gasselhuber B., Furtmüller P.G. et al. // Arch. Biochem. Biophys. 2012. V. 525. № 2. P. 131; https://doi.org/10.1016/j.abb.2012.01.017
  18. 18. Chen C., Campbell L.T., Blair Sh.E. et al. // Front. Microbiol. 2012. V. 3. P. 265; https://doi.org/10.3389/fmicb.2012.00265
  19. 19. Besir A., Yazici F., Mortas M. et al. // LWT — Food Sci. Tech. 2021. V. 139. P. 110602; https://doi.org/10.1016/j.lwt.2020.110602
  20. 20. Fang G.Z., Lv Y.Y., Sheng W. et al. // Anal. Bioanal. Chem. 2011. V. 401. № 10. P. 3367; https://doi.org/10.1007/s00216-011-5430-4
  21. 21. Ярова О.А., Лобанов А.В. // Рос. журн. “ Проблемы ветеринарной санитарии, гигиены и экологии”. 2012. № 2(8). С. 12.
  22. 22. Ярова О.А., Сохликов А.Б., Лобанов А.В. // Вестн. РАСХН. 2012. № 6. С. 51.
  23. 23. ГОСТ 19792-2017. Мед натуральный. Технические условия. М.: Стандартинформ, 2017.
  24. 24. ГОСТ 31769-2012. Мед. Метод определения частоты встречаемости пыльцевых зерен. М.: Стандартинформ, 2019.
  25. 25. Лобанов А.В., Рубцова Н.А., Веденеева Ю.А. и др. // Докл. АН. 2008. Т. 241. № 6. С. 773.
  26. 26. ГОСТ 32167-2013. Мед. Метод определения сахаров. М.: Стандартинформ, 2018.
  27. 27. ГОСТ 31768-2012. Мед натуральный. Методы определения гидроксиметилфурфураля. М.: Стандартинформ, 2019.
  28. 28. Аганин А.В. Мед и его исследование. Саратов: Изд-во Сарат. ун-та, 1985.
  29. 29. ГОСТ 34232-2017. Мед. Методы определения активности сахаразы, диастазного числа, нерастворимых веществ. М.: Стандартинформ, 2017.
  30. 30. Flanjak I., Strelec I., Kenjerić D. et al. // J. Apicult. Sci. 2015. V. 60. № 1. P. 39; https://doi.org/10.1515/jas-2016-0005
  31. 31. Бурмистров А.Н., Никитина В.А. Медоносные растения и их пыльца: Справочник. М.: Росагропромиздат, 1990.
  32. 32. Kasiotis K.M., Baira E., Iosifidou S. et al. // Front. Chem. 2022. V. 10. P. 924881; https://doi.org/10.3389/fchem.2022.924881
  33. 33. Lehébel-Péron A., Sidawy P., Dounias E. et al. // J. Rur. Stud. 2016. V. 44. P. 132; https://doi.org/10.1016/j.jrurstud.2016.01.005
  34. 34. Andrade P.B., Amaral M.T., Isabel P. et al. // Food Chem. 1999. V. 66. № 4. P. 503; https://doi.org/10.1016/S0308-8146 (99)00100-4
  35. 35. Ярова О.А., Лобанов А.В. // РЖ “Проблемы ветеринарной санитарии, гигиены и экологии”. 2012. № 1(7). С. 1.
  36. 36. Bucekova M., Juricova V., Monton E. et al. // Food Chem. 2018. V. 240. P. 1131; https://doi.org/10.1016/j.foodchem.2017.08.054
  37. 37. Крупянский Ю.Ф. // Хим. физика. 2021. Т. 40. № 3. С. 60; https://doi.org/10.31857/S0207401X21030079
  38. 38. Терешкин Э.В., Лойко Н.Г., Терешкина К.Б. и др. // Хим. физика. 2021. Т. 40. № 11. С. 48; https://doi.org/10.31857/S0207401X21110091
  39. 39. Крупянский Ю.Ф., Генералова А.А., Коваленко В.В. и др. // Хим. физика. 2023. Т. 42. № 6. С. 3; https://doi.org/10.31857/S0207401X23060067
  40. 40. Терешкин Э.В., Терешкина К.Б., Лойко Н.Г. и др. // Хим. физика. 2023. Т. 42. № 5. С. 30; https://doi.org/10.31857/S0207401X23050138
  41. 41. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  42. 42. Kluytmans J., van Belkum A., Verbrugh H. // Microbiol. Mol. Biol. Rev. 1997. V. 10(3). P. 505.
  43. 43. Rahnama H., Azari R., Yousefi M.H. et al. // Food Contr. 2022. V. 143. P. 109250; https://doi.org/10.1016/j.foodcont.2022.109250
  44. 44. Матиенко Л.И., Миль Е.М., Бинюков В.И. // Хим. физика. 2020. Т. 39. № 6. С. 87; https://doi.org/10.31857/S0207401X20060084
  45. 45. Карбышев М.С., Абдуллаев Ш.П. Биохимия оксидативного стресса: Учебно-методическое пособие. М.: РНИМУ им. Н.И. Пирогова Минздрава России, 2018.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека