- PII
- 10.31857/S0207401X24030027-1
- DOI
- 10.31857/S0207401X24030027
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 3
- Pages
- 14-26
- Abstract
- Impurity paramagnetic ions Mn2+ and high spin Fe3+ (S = 5/2) are shown to be very informative “paired spin labels” to investigate structural transformations in natural aluminosilicate clay minerals by ESR spectroscopy. Second derivative ESR (SD ESR) enables to detect minor narrow lines of the ions against the background of intense broad lines of other paramagnetic impurities. Complex SD ESR spectra of the ions are explained by the Jahn-Teller effect and hyperfine interactions with OH-groups. SD ESR spectra before and after heating (620°C and 900°C) proved transformations of octahedral crystal cells accompanied by the loss of the OH-groups, displacement of the ions to equivalent positions.
- Keywords
- ЭПР-спектроскопия парамагнитные ионы спиновые метки структура филлосиликаты эффект Яна–Теллера
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Bleam W.F. Soil and Environmental Chemistry. 2nd edition. Academic Press, 2016. Ch. 3. P. 87; https://doi.org/10.1016/B978-0-12-804178-9.00003-3
- 2. Schoonheydt R., Johnston C.T., Bergaya F. // Dev. Clay Sci. 2018. V. 9. P. 1; https://doi.org/10.1016/B978-0-08-102432-4.00001-9
- 3. Bailey S.W. // Clays Clay Miner. 1972. V. 20. P. 381; https://doi.org/10.1346/CCMN.1972.0200606
- 4. Yavuz F., Kumral Y.F., Karakaya M., Karakaya N.Ç., Yildirim M. // Comput. Geosciences. 2015. V. 81. P. 101; https://doi.org/81.10.1016/j.cageo.2015.04.011
- 5. Solodovnikov S.F. // J. Struct. Chem. 2014. V. 55. P. 1191; https://doi.org/10.1134/S0022476614070014
- 6. Osipov V.I., Sergeev E.M. // Bull. Intern. Assoc. Eng. Geol. 1972. V. 5. P. 9; https://doi.org/10.1007/BF02634646
- 7. Lund A., Masaru S., Shigetaka S. Principles and Applications of ESR Spectroscopy. Dordrecht: Springer, 2011; https://doi.org/10.1007/978-1-4020-5344-3
- 8. Бортников Н.С., Минеева Р.М., Савко А.Д., Новиков В.М., Крайнов А.В. и др. // ДАН. 2010. Т. 433. № 2. С. 227.
- 9. Hemanthkumar G.N., Parthasarathy G., Chakradhar R.P.S. et al. // Phys. Chem. Miner. 2009. V. 36. P. 447; https://doi.org/10.1007/s00269-009-0291-5
- 10. McBride M.B. // Clays Clay Miner. 1976. V. 24. P. 88; https://doi.org/10.1346/CCMN.1976.0240207
- 11. Метод спиновых меток. Теория и применение / Под ред. Л. Берлинера. Пер. с англ. М.: Мир, 1979.
- 12. Вассерман А.М., Коварский А.Л. Спиновые метки и зонды в физикохимии полимеров / Под ред. акад. А.Л. Бучаченко. М.: Наука, 1986.
- 13. Пармон В.Н., Кокорин А.И., Жидомиров Г.М. Стабильные бирадикалы / Под ред. акад. А.Л. Бучаченко. М.: Наука, 1980.
- 14. Кокорин А.И., Громов О.И., Путников А.Е. и др. // Хим. физика. 2021. Т. 40. № 3. С. 10; https://doi.org/10.31857/S0207401X21030067
- 15. Шуваракова Е.И., Бедило А.Ф., Кенжин Р.М. и др. // Хим. физика. 2022. Т. 41. № 6. С. 20; https://doi.org/10.31857/S0207401X22060127
- 16. Кытин В.Г., Дувакина А.В., Константинова Е.А. и др. // Хим. физика. 2022. Т. 41. № 6. С. 30; https://doi.org/10.31857/S0207401X22060073
- 17. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2022. Т. 41. № 4. С. 32; https://doi.org/10.31857/S0207401X22040094
- 18. P. Hall // Clay Miner. 1980. V. 15. № 4. P. 321; https://doi.org/10.1180/claymin.1980.015.4.01
- 19. Babińska J., Dyrek K., Wyszomirski P. // Mineralogia Polonica. 2007. V. 38. № 2. P. 125; https://doi.org/10.2478/v10002-007-0021-x
- 20. ГОСТ Р 57923-2017 (ISO 24235:2007); https://docs.cntd.ru/document/1200157643
- 21. ISO 21822:2019; https://nd.gostinfo.ru/document/6479315.aspx
- 22. ГОСТ ISO 13099-2:2012; https://docs.cntd.ru/document/1200140376
- 23. Четверикова А.Г. // Измер. техника. 2023. № 11. С. 67.
- 24. ГОСТ 21216-2014; https://docs.cntd.ru/document/1200115068
- 25. Grim R.E. Applied Clay Mineralogy. New York: McGraw-Hill, 1962.
- 26. Каныгина О.Н., Бердинский В.Л., Филяк М.М., Четверикова А.Г., Макаров В.Н. и др. // Журн. техн. физики. 2020. Т. 90. № 8. С. 1311.
- 27. Chen J., Min F., Liu L. et al. // Physicochem. Probl. Miner. Process. 2020. V. 56. P. 338.
- 28. Shata S., Hesse R. // Can. Mineral. 1998. V. 36. P. 1525.
- 29. Cui J., Zhang Z., Han F. // Appl. Clay Sci. 2020. V. 190. P. 105543; https://doi.org/10.1016/j.clay.2020.105543
- 30. CMS Workshop Lectures. Clay Water Interface and its Rheological Implications / Eds. Güven N., Pollastro R.M. Boulder, Colorado (USA): The Clay Minerals Society, 1992. V. 4.
- 31. Хацринов А.И., Корнилов А.В., Лыгина Т.З., Межевич Ж.В. // Неорган. материалы. 2019. Т. 55. № 11. С. 1204.
- 32. Slay D., Charilaou M., Cao D. et al. // J. Appl. Phys. 2021. V. 130. № 11. P. 113902; https://doi.org/10.1063/5.0060769
- 33. Worasith N., Goodman В.А., Neampan J. et al. // Clay Miner. 2011. V. 46. P. 539; https://doi.org/10.1180/claymin.2011.046.4.539
- 34. Chetverikova A.G., Kanygina O.N., Makarov V.N., Berdinskiy V.L., Seregin M.M. // Ceramica. 2022. V. 68. № 388. P. 441; https://doi.org/10.1590/0366-69132022683883346
- 35. Balan E., Allard T., Boizot B. et al. // Clays Clay Miner. 1999. V. 47. P. 605; https://doi.org/10.1346/CCMN.1999.0470507
- 36. Четверикова А.Г., Макаров В.Н., Каныгина О.Н., Серегин М.М., Строганова Е.А. // Конденсированные среды и межфазные границы. 2023. Т. 25. № 2. С. 18.
- 37. Бортников Н.С., Минеева Р.М., Соболева С.В. // ДАН. 2008. Т. 422. № 1. С. 85.