- PII
- 10.31857/S0207401X24030086-1
- DOI
- 10.31857/S0207401X24030086
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 3
- Pages
- 76-86
- Abstract
- Intermetallic alloys were synthesized in the 5Ti + 3Si + xNi system by the method of self-propagating high-temperature synthesis (SHS) and mechanosynthesis. The influence of nickel content on the morphology, size and yield of composite particles after mechanical activation (MA) of mixtures was studied. The dependences of the maximum temperatures and combustion rates, phase composition, morphology and elongation of synthesis products on the nickel content for the initial and MA mixtures are studied. Under the conditions of the experiments conducted in this work, combustion process was able to realize and at the same time the samples burned completely at a nickel content of 10 to 60 wt.% in the 5Ti + 3Si + xNi system. After MA, the samples from the 5Ti + 3Si mixture burned to the end, and during the activation of the 5Ti + 3Si + 40% Ni mixture, mechanochemical synthesis occurred. With increasing nickel content combustion temperature decreases, and combustion velocity behaves nonmonotonically, increases the size of composite particles and decreases the yield of the mixture after MA. MA practically did not affect the maximum combustion temperatures of mixtures of 5Ti + 3Si + xNi. A multiple (from 0.7 to 2.9 cm/s) increase in the burning rate of samples from MA mixtures with an increase in the Ni content from 20 to 30 wt. % was recorded. An increase in the nickel content leads to an increase in the content of triple phases and the amount of melt in the synthesis products of mixtures of 5Ti + 3Si + xNi. Shrinkage of product samples increases with increasing nickel content in the initial mixtures. After MA, the shrinkage of the product samples is replaced by their growth. Explanations of the observed dependencies are proposed.
- Keywords
- горение механическая активация интерметаллидный сплав система Ti + Si + Ni фазовый состав продуктов механохимический синтез примесное газовыделение
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Тихонов А.С., Герасимов А.П., Прохорова И.И. Применение эффекта памяти формы в современном машиностроении. М.: Машиностроение, 1981.
- 2. Гюнтер В.Э., Котенко В.В., Миргазизов М.З. и др. Сплавы с памятью формы в медицине. Томск: Изд-во Том. ун-та, 1986.
- 3. Гюнтер В.Э., Итин В.И., Монасевич Л.А. и др. Эффекты памяти форм и их применение в медицине. Новосибирск: Наука, 1992.
- 4. Сычев А.Е., Вадченко С.Г., Щукин А.С. и др. // Хим. физика. 2022. Т.41. № 1. С. 69; https://doi.org/10.31857/S0207401X22010150
- 5. Вадченко С.Г., Алымов М.И. // Хим. физика. 2022. Т. 41. № 3. С. 22; https://doi.org/10.31857/S0207401X2203013X
- 6. Итин В.И., Монасевич Т.В., Братчиков А.Д. // Физика горения и взрыва. 1997. Т. 33. № 5. С. 48.
- 7. Итин В.И., Найороденко Ю.С. Высокотемпературный синтез интерметаллических соединений. Томск: Из-во Томского ун-та, 1989.
- 8. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
- 9. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 51.
- 10. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 60.
- 11. Кочетов Н.А., Сеплярский Б.С., Щукин А.С. // Физика горения и взрыва. 2019. Т. 55. № 3. С.63; https://doi.org/10.15372/FGV20190308
- 12. Kasraee К., Yousefpoura M., Tayebifard S.A. // Mater. Chem. Phys. 2019. V. 222. P. 286; https://doi.org/10.1016/j.matchemphys.2018.10.024
- 13. Кочетов Н.А., Сеплярский Б.С. // ЖФХ. 2018. Т. 92. № 1. С. 56; https://doi.org/10.7868/S0044453718010119
- 14. Кочетов Н.А., Студеникин И.А. // Хим. физика. 2018. Т. 37. № 1. С. 43; https://doi.org/10.7868/S0207401X18010089
- 15. Jiao Y., Huang L., Wang S. et al. // J. Alloy. Comp. 2017. V. 704. P. 269; https://doi.org/10.1016/j.jallcom.2017.02.044
- 16. Wang H.Y., Zha M., Lü S.J. et al. // Solid State Sci. 2010. V. 12 P. 1347; https://doi.org/10.1016/j.solidstatesciences.2010.05.006
- 17. Yeh C., Hwang P., Chen Y. // J. Alloy. Comp. 2017. V. 714. P. 567; https://doi.org/10.1016/j.jallcom.2017.04.283
- 18. Wang H.Y., Lü S.J., Xiao W. et al. // J. Am. Ceram. Soc. 2013. V. 96. P. 950. https://doi.org/10.1111/jace.12079
- 19. Kasraee K., Tayebifard A., Salahi E. // Adv. Powder Technol. 2014. V. 25. P. 885; https://doi.org/10.1016/j.apt.2014.01.008
- 20. Zha M., Wang H.Y., Li S.T., et al. // Mater. Chem. Phys. 2009. V. 114. P. 709. https://doi.org/10.1016/j.matchemphys.2008.10.024
- 21. Beattie H.J., Ver Snyder F.L., Jr. // Nature. 1956. V. 178. P. 20.
- 22. Beattie H.J., Hagel W.C., Jr. // Trans. Met. Soc. AIME. 1957. V. 209. P. 911.
- 23. Gladyshevskii E.I. // Sov. Powder Metall. Met. Ceram. 1962. V. 1. P. 262.
- 24. Bardos D.I., Gupta K.P., Beck P.A. // Trans. Met. Soc. AIME. 1961. V. 221. P. 1087.
- 25. Steinmets J., Albrecht J.-M., Malaman B. // C.R. Hebd. Seánces Acad. Sci., Ser. C, Sci. Chem. 1974. V. 279C. P. 1119.
- 26. Jeitschko W., Jordan A.G., Beck P.A. //Trans. Met. Soc. AIME. 1969. V. 245. P. 335.
- 27. Shoemaker C.B., Shoemaker D.P. // Acta Crystallogr. 1965. V. 18. P. 900.
- 28. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39; https://doi.org/10.31857/S0207401X2207007X
- 29. Kochetov N.A., Sytschev A.E. // Mater. Chem. Phys. 2021. V. 257. P. 123727; https://doi.org/10.1016/j.matchemphys.2020.123727
- 30. Weitzer F., Naka M., Krendelsberger N. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 6. P. 982; https://doi.org/10.1002/zaac.201000017
- 31. Сеплярский Б.С. // Докл. РАН. 2004. T. 396. № 5. C. 640.
- 32. Seplyarskii B.S., Kochetkov R.A., Lisina T.G. et al. // Combustion and Flame. 2022. V. 236. 111811; https://doi.org/10.1016/j.combustflame.2021.111811
- 33. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210; https://doi.org/10.3103/S1061386216040105
- 34. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90; https://doi.org/10.3103/S1061386215020107
- 35. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Ibid. 2004. V. 13. № 3. P.193.
- 36. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.