RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The Effect of Nickel Content and Mechanical Activation on Combustion in the 5Ti + 3Si + хNi System

PII
10.31857/S0207401X24030086-1
DOI
10.31857/S0207401X24030086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 3
Pages
76-86
Abstract
Intermetallic alloys were synthesized in the 5Ti + 3Si + xNi system by the method of self-propagating high-temperature synthesis (SHS) and mechanosynthesis. The influence of nickel content on the morphology, size and yield of composite particles after mechanical activation (MA) of mixtures was studied. The dependences of the maximum temperatures and combustion rates, phase composition, morphology and elongation of synthesis products on the nickel content for the initial and MA mixtures are studied. Under the conditions of the experiments conducted in this work, combustion process was able to realize and at the same time the samples burned completely at a nickel content of 10 to 60 wt.% in the 5Ti + 3Si + xNi system. After MA, the samples from the 5Ti + 3Si mixture burned to the end, and during the activation of the 5Ti + 3Si + 40% Ni mixture, mechanochemical synthesis occurred. With increasing nickel content combustion temperature decreases, and combustion velocity behaves nonmonotonically, increases the size of composite particles and decreases the yield of the mixture after MA. MA practically did not affect the maximum combustion temperatures of mixtures of 5Ti + 3Si + xNi. A multiple (from 0.7 to 2.9 cm/s) increase in the burning rate of samples from MA mixtures with an increase in the Ni content from 20 to 30 wt. % was recorded. An increase in the nickel content leads to an increase in the content of triple phases and the amount of melt in the synthesis products of mixtures of 5Ti + 3Si + xNi. Shrinkage of product samples increases with increasing nickel content in the initial mixtures. After MA, the shrinkage of the product samples is replaced by their growth. Explanations of the observed dependencies are proposed.
Keywords
горение механическая активация интерметаллидный сплав система Ti + Si + Ni фазовый состав продуктов механохимический синтез примесное газовыделение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Тихонов А.С., Герасимов А.П., Прохорова И.И. Применение эффекта памяти формы в современном машиностроении. М.: Машиностроение, 1981.
  2. 2. Гюнтер В.Э., Котенко В.В., Миргазизов М.З. и др. Сплавы с памятью формы в медицине. Томск: Изд-во Том. ун-та, 1986.
  3. 3. Гюнтер В.Э., Итин В.И., Монасевич Л.А. и др. Эффекты памяти форм и их применение в медицине. Новосибирск: Наука, 1992.
  4. 4. Сычев А.Е., Вадченко С.Г., Щукин А.С. и др. // Хим. физика. 2022. Т.41. № 1. С. 69; https://doi.org/10.31857/S0207401X22010150
  5. 5. Вадченко С.Г., Алымов М.И. // Хим. физика. 2022. Т. 41. № 3. С. 22; https://doi.org/10.31857/S0207401X2203013X
  6. 6. Итин В.И., Монасевич Т.В., Братчиков А.Д. // Физика горения и взрыва. 1997. Т. 33. № 5. С. 48.
  7. 7. Итин В.И., Найороденко Ю.С. Высокотемпературный синтез интерметаллических соединений. Томск: Из-во Томского ун-та, 1989.
  8. 8. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. № 9. С. 39; https://doi.org/10.31857/S0207401X20090058
  9. 9. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 51.
  10. 10. Корчагин М.А., Григорьева Т.Ф., Бохонов Б.Б. и др. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 60.
  11. 11. Кочетов Н.А., Сеплярский Б.С., Щукин А.С. // Физика горения и взрыва. 2019. Т. 55. № 3. С.63; https://doi.org/10.15372/FGV20190308
  12. 12. Kasraee К., Yousefpoura M., Tayebifard S.A. // Mater. Chem. Phys. 2019. V. 222. P. 286; https://doi.org/10.1016/j.matchemphys.2018.10.024
  13. 13. Кочетов Н.А., Сеплярский Б.С. // ЖФХ. 2018. Т. 92. № 1. С. 56; https://doi.org/10.7868/S0044453718010119
  14. 14. Кочетов Н.А., Студеникин И.А. // Хим. физика. 2018. Т. 37. № 1. С. 43; https://doi.org/10.7868/S0207401X18010089
  15. 15. Jiao Y., Huang L., Wang S. et al. // J. Alloy. Comp. 2017. V. 704. P. 269; https://doi.org/10.1016/j.jallcom.2017.02.044
  16. 16. Wang H.Y., Zha M., Lü S.J. et al. // Solid State Sci. 2010. V. 12 P. 1347; https://doi.org/10.1016/j.solidstatesciences.2010.05.006
  17. 17. Yeh C., Hwang P., Chen Y. // J. Alloy. Comp. 2017. V. 714. P. 567; https://doi.org/10.1016/j.jallcom.2017.04.283
  18. 18. Wang H.Y., Lü S.J., Xiao W. et al. // J. Am. Ceram. Soc. 2013. V. 96. P. 950. https://doi.org/10.1111/jace.12079
  19. 19. Kasraee K., Tayebifard A., Salahi E. // Adv. Powder Technol. 2014. V. 25. P. 885; https://doi.org/10.1016/j.apt.2014.01.008
  20. 20. Zha M., Wang H.Y., Li S.T., et al. // Mater. Chem. Phys. 2009. V. 114. P. 709. https://doi.org/10.1016/j.matchemphys.2008.10.024
  21. 21. Beattie H.J., Ver Snyder F.L., Jr. // Nature. 1956. V. 178. P. 20.
  22. 22. Beattie H.J., Hagel W.C., Jr. // Trans. Met. Soc. AIME. 1957. V. 209. P. 911.
  23. 23. Gladyshevskii E.I. // Sov. Powder Metall. Met. Ceram. 1962. V. 1. P. 262.
  24. 24. Bardos D.I., Gupta K.P., Beck P.A. // Trans. Met. Soc. AIME. 1961. V. 221. P. 1087.
  25. 25. Steinmets J., Albrecht J.-M., Malaman B. // C.R. Hebd. Seánces Acad. Sci., Ser. C, Sci. Chem. 1974. V. 279C. P. 1119.
  26. 26. Jeitschko W., Jordan A.G., Beck P.A. //Trans. Met. Soc. AIME. 1969. V. 245. P. 335.
  27. 27. Shoemaker C.B., Shoemaker D.P. // Acta Crystallogr. 1965. V. 18. P. 900.
  28. 28. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39; https://doi.org/10.31857/S0207401X2207007X
  29. 29. Kochetov N.A., Sytschev A.E. // Mater. Chem. Phys. 2021. V. 257. P. 123727; https://doi.org/10.1016/j.matchemphys.2020.123727
  30. 30. Weitzer F., Naka M., Krendelsberger N. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 6. P. 982; https://doi.org/10.1002/zaac.201000017
  31. 31. Сеплярский Б.С. // Докл. РАН. 2004. T. 396. № 5. C. 640.
  32. 32. Seplyarskii B.S., Kochetkov R.A., Lisina T.G. et al. // Combustion and Flame. 2022. V. 236. 111811; https://doi.org/10.1016/j.combustflame.2021.111811
  33. 33. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210; https://doi.org/10.3103/S1061386216040105
  34. 34. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90; https://doi.org/10.3103/S1061386215020107
  35. 35. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Ibid. 2004. V. 13. № 3. P.193.
  36. 36. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library