- PII
- 10.31857/S0207401X24030121-1
- DOI
- 10.31857/S0207401X24030121
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 3
- Pages
- 112-121
- Abstract
- Composites of polyether polylactide (PLA) synthesized from natural raw materials with graphite nanoplates (GNP), which represent a new type of composite materials based on biodegradable polymers, were obtained by solid-phase method under the action of shear deformations. The porosity of composites was evaluated and their electrical and mechanical properties were studied. The effect of UV radiation on the molecular weight and molecular weight distribution of PLA in PLA-GNP composites of different compositions was investigated using the method of excision chromatography (EC), and the effect of the GNP nanofiller content on the change of their mechanical characteristics in the process of radiation was shown.
- Keywords
- полилактид наноразмерные пластины графита УФ-облучение эксклюзионная хроматография электрические и механические свойства
- Date of publication
- 08.03.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 42
References
- 1. Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W. et al. // Polymer. 2014. V. 6. P. 2232; https://doi.org/10.3390/polym6082232
- 2. Papageorgiou D.J., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2017. V. 90. P. 75; https://doi.org/10.1016/j.pmatsci.2017.07.004
- 3. Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly (lactic acid) and their industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Gorinchem, The Netherlands: Royal Society of Chemistry, 2010; https://doi.org/10.1007/978-3-642-03287-5_13
- 4. Garlotta D.A. // J. Polym. Environ. 2001. V. 19. Р. 63; https://doi.org/10.1023/A:1020200822435
- 5. Jiménez A., Peltzer M., Ruseckaite R. Poly(lactic acid) Science and Technology Processing, Properties, Additives and Applications. Cambridge: Royal Society of Chemistry, 2015; https://doi.org/10.1039/9781782624806-FP005
- 6. Zhang M., Ding X., Zhan Y., Wang Y., Wang X. // J. Hazard. Mater. 2020. V. 384. P. 121260; https://doi.org/10.1016/j.jhazmat.2019.121260
- 7. Tawiah B., Bin Y., Richard K.K. Y. et al. // Carbon. 2019. V. 150. P. 8; https://doi.org/10.1016/j.carbon.2019.05.002
- 8. Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P. et al. // Mech. Compos. Mater. 2023. V. 58. P. 845; https://doi.org/10.1007/s11029-023-10073-2
- 9. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Polym. Cryst. 2022. V. 2022. P. 1; https //doi.org/10.1155/2022/4367582
- 10. Hideto T., Hiroaki S., Yoshihiro S. // J. Polym. Environ. 2012. V. 20. P. 706; https://doi.org/10.1007/s10924-012-0424-7
- 11. Angelin T.S., Ananthi V., Abhispa B., Nallathambi S. et al. // Int. J. Biol. Macromol. 2023. V. 234. P. 123703; https://doi.org/10.1016/j.ijbiomac.2023.123703
- 12. Olewnik-Kruszkowska E., Koter I., Skopińska-Wiśniewska J. et al. // J. Photochem. Photobiol. A. Chem. 2015. V. 311. P. 114; http://dx.doi.org/doi:10.1016/j.jphotochem.2015.06.029
- 13. Смыковская Р.С., Кузнецова О.П., Мединцева Т.И. и др. // Хим. физика. Т. 41. № 4. С. 56.
- 14. Sasov A., Van Dyck D. // J. Microscopy. 1998. V. 191. P. 151; https://doi.org/10.5772/32264
- 15. Мединцева Т.И., Сергеев А.И., Шилкина Н.Г., Прут Э.В. // Хим. физика. 2023. Т. 42. № 2. С. 61; https://doi.org/10.31857/S0207401X23050096
- 16. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Appl. Sci. 2023. V. 13. P. 3920; https://doi.org/10.3390/app13063920
- 17. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // J. Appl. Polym. Sci. 2019. V. 136. P. 47598; https://doi.org/10.1002/app.47598
- 18. Jonscher A.K. // Nature. 1977. V. 267. P. 673; https://doi.org/10.1038/267673a0
- 19. Роговина С.З., Ломакин С.М., Гасымов М.М. и др. // Все материалы. Энциклопед. справ. 2022. № 6. С. 11; https://doi.org/10.31044/1994-6260-2022-0-6-11-19