RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The structure of tetranuclear zirconium pivalate ZR4O2 [(CH3)3CCO2]12 according to X-ray diffraction analysis and quantum chemical calculations

PII
10.31857/S0207401X24040023-1
DOI
10.31857/S0207401X24040023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
8-17
Abstract
The crystal and molecular structure of a polynuclear pivalate complex obtained by the interaction of ZrCl4 with pivalic acid was determined by X-ray diffraction analysis. The compound C71H124O28Zr4 (compound 1) crystallizes in the monoclinic crystal system. The crystal structure was refined in the nonstandard space group I2. The asymmetric part of the structure includes three Zr atoms, six pivalate ligands, a bridging µ3-O oxygen atom, as well as disordered crystallization molecules of pivalic acid with an occupancy of 50% and benzene with an occupancy of 50%. The zirconium complex molecule is a tetranuclear cluster that contains three types of Zr atoms that differ in ligand environment. Comparison of the results of quantum chemical calculations of the model reaction ZrCl4 with acetic acid with the literature data on reactions of ZrCl4 with aliphatic acids have shown the possibility of the formation of both mononuclear Zr(RCO2)4 and polynuclear clusters in this reaction, which is a new route for obtaining polynuclear zirconium clusters. The structure of the clusters formed depends on the steric properties of carboxylate ligands.
Keywords
цирконий полиядерные карбоксилаты пивалаты синтез рентгеноструктурный анализ квантовохимические расчеты
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Mehrotra R.C., Bohra R. Metal Carboxylates. London: Academic Press, 1983.
  2. 2. Ludvig J., Schwarz D. // Inorg. Chem. 1970. V. 9. № 3. P. 607. https://doi.org/10.1021/ic50085a034
  3. 3. Kickelbick G., Schubert U. // Chem. Ber. Recueil. 1997. V.130. № 4. P. 473. https://doi.org/10.1002/cber.19971300406
  4. 4. Piszczek P., Radtke A., Grodzicki A., Wojtczak A., Chojnacki J. // Polyhedron. 2007. V. 26. № 3. P. 679. https://doi.org/10.1016/j.poly.2006.08.025
  5. 5. Cavka J.H., Jakobsen S., Olsbye U. et al. // J. Amer. Chem. Soc. 2008. V. 130. № 42. P. 13850. https://doi.org/10.1021/ja8057953
  6. 6. Chen Z., Hanna S.L., Redfern L.R. et al. // Coord. Chem. Rev. 2019. V. 386. № 1. P. 32. https://doi.org/10.1016/j.ccr.2019.01.017
  7. 7. Frot T., Cochet S., Laurent G. et al. // Eur. J. Inorg. Chem. 2010. V. 2010. № 36. P. 5650. https://doi.org/10.1002/ejic.201000807
  8. 8. Comyns A.E. Encyclopedic Dictionary of Named Processes in Chemical Technology. Fourth Edition. Boca Raton, London, New York: CRC Press Inc., 2014.
  9. 9. Mishra A.K. Smart Ceramics: Preparation, Properties and Applications. Singapore. Jenny Stanford Publishing, 2018.
  10. 10. Sugimoto T. Monodispersed Particles. 2nd ed. Amsterdam: Elsevier, 2019.
  11. 11. Boyle T.J., Ottley L.A.M., Rodriguez M.A. // Polyhedron. 2005. V. 24. № 13. P. 1727. https://doi.org/10.1016/j.poly.2005.05.005
  12. 12. Schneider J.J., Hoffmann R.C., Issanin A., Dilfer S. // Mater. Sci. Eng., B. 2011. V. 176. № 13. P. 965. https://doi.org/10.1016/j.mseb.2011.05.024
  13. 13. Wang Xue, Sun Meng // Int. J. Electrochem. Sci. 2021. V. 16. 210530. https://doi.org/10.20964/2021.05.42
  14. 14. Salehipour M., Rezaei S., Rezaei M., Yazdani M., Mogharabi-Manzari M. // J. Inorg. Organomet. Polym. Mater. 2021. V. 31. № 12. P. 4443. https://doi.org/10.1007/s10904-021-02118-7
  15. 15. Махаев В.Д., Петрова Л.А. // ЖНХ. 2011. T. 56. № 2. C. 343. https://doi.org/10.1134/S0036023611020185
  16. 16. Махаев В.Д., Петрова Л.А. // ЖОХ. 2018. T. 88. № 7. C. 1138. https://doi.org/10.1134/S1070363218070137
  17. 17. Sheldrick G.M. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  18. 18. Licence to Use Agreement: Gaussian, Inc., Wallingford, CT 06492.
  19. 19. Kapoor R.N., Mehrotra R.C. // J. Chem. Soc. 1959. № 1. P. 422. https://doi.org/10.1039/JR9590000422
  20. 20. Заиков Г.Е., Арцис М.И., Андреев Д.С., Игнатов А.В. // Хим. физика. 2022. Т. 41. № 7. С. 23. https://doi.org/10.31857/S0207401X22070169
  21. 21. Hites R.A., Biemann K. // J. Amer. Chem. Soc. 1972. V. 94. № 16. P. 5772. https://doi.org/10.1021/ja00771a039
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library