- PII
- 10.31857/S0207401X24040038-1
- DOI
- 10.31857/S0207401X24040038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 4
- Pages
- 18-28
- Abstract
- The ZSM-5 zeolites with Si/Al ratio 50 and 80 (ZSM-5-50 и ZSM-5-80) modified by Ca-, Sr-, Cr-, Mn- и Sb-ions were synthesized and investigated in oxidation of benzene to phenol. It was shown that more active and selective in direct oxidation of benzene by nitrous oxide are catalysts containing about 0.1–0.2% of Sb. It formally corresponds to substitution of 1/12 and 1/6 ions of H-ions by Sb-ions in ratio 1 : 1 of zeolite. Yield of phenol equal to 61.2% was obtained at 450°C and contact time 1 sec. with selectivity to phenol 96% in the presence of (ZSM-5-50 + 1/12 Sb) sample. It is about twice as much than an average value of yield reported in literature for other Me-ZSM-5 catalysts. Also, (ZSM-5-50 + 1/6 Sb) sample revealed much higher stability than other catalysts based on ZSM-5 zeolites. A model of nitrous oxide activation over single active sites (located very distant from each other) of the catalyst is suggested. The suggested model of single site adsorption and catalysis allows explain more higher efficiency of nitrous oxide as oxidant than that of molecular oxygen in reaction of direct oxidation of benzene to phenol, especially over catalysts with a low concentration (less than 0.1%) of |Me-ions.
- Keywords
- бензол фенол цеолит катализ окисление закись азота единичный активный центр
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Брук Ю.А. Кумольный способ получения фенола и ацетона. Л.: Химия, 1983.
- 2. Закошанский В.М. // Рос. хим. журн. 2008. Т. LII. № 4. С. 53.
- 3. Iwamoto M., Hirata J., Matsukami K., Kagawa S. // J. Phys. Chem. 1983. V. 87. № 6. P. 903. https://doi.org/10.1021/j100229a001
- 4. Suzuki E., Nakashiro K., Ono Y. // Chem. Lett. 1988. V. 17. P. 953. https://doi.org/10.1246/cl.1988.953
- 5. Panov G.I., Sobolev V.I., Kharitonov A.S. // J. Mol. Catal. 1990. V. 61. P. 85. https://doi.org/10.1016/0304-5102 (90)85197-P
- 6. Sobolev V.I., Panov G.I., Kharitonov A.S et al. // J. Catal. 1993. V. 139. P. 435. https://doi.org/10.1006/jcat.1993.1038
- 7. Харитонов А.С., Панов Г.И., Соболев В.И. // Кинетика и катализ. 1989. Т. 30. № 6. С. 1512.
- 8. Panov G.I., Sheveleva G.A., Kharitonov A.S. et al. // Appl. Catal. A. 1992. V. 82. P. 31. https://doi.org/10.1016/0926-860X (92)80003-U
- 9. Харитонов А.С., Панов Г.И., Соболев И.И. // Успехи химии. 1992. Т. 61. вып. 11. С. 2062.
- 10. Удалова О.В., Быховский М.Я., Шибанова М.Д., Селезнев В.А., Кули-заде А.М., Корчак В.Н. // Наука и технология углеводородов. 2001. № 6. С. 60.
- 11. Удалова О.В., Фирсова А.А., Шибанова М.Д., Селезнев В.А., Кули-заде А.М., Корчак В.Н. // Там же. 2002. № 1. С. 23.
- 12. Корчак В.Н., Удалова О.В., Шибанова М.Д., Селезнев В.А., Кули-заде А.М., Сильченкова О.Н. Способ окисления бензола в фенол: Патент РФ 2184722. 2001. // Б.И. 2002. № 19.
- 13. Кучеров А.В., Слинкин А.А. // Успехи химии. 1992. Т. 61. № 9. С. 1687.
- 14. Ivanov A.A., Chernyavsky V.S., Gross M.I. et al. // Appl. Catal. A. 2003. V. 249. P. 327. https://doi.org/10.1016/S0926-860X (03)00224-2
- 15. Chernyavsky V.S., Pirutko I.V., Uriarte A.K., Kharitonov A.S., Panov G.I. // J. Catal. 2007. V. 245. P. 466. https://doi.org/10.1016/j.jcat.2006.10.023
- 16. Pirutko I.V., Chernyavsky V.S., Starokon E.V. et al. // Appl. Catal. B. 2009. V. 91. P. 174. https://doi.org/10.1016/j.apcatb.2009.05.021
- 17. Kustov L., Tarasov A., Bogdan V., Tyrlov A., Fulmer J. // Catal. Today. 2000. V. 61. P. 123. https://doi.org/10.1016/S0920-5861 (00)00354-0
- 18. Tarasov A.L., Kustov L.M., Tyrlov A.A., Kuli-zade A.M., Sholobenko V.L. // Proc. 4 th World Congress on Oxidation Catalysis. Potsdam (Germany). 2001. P. 151.
- 19. Kustov L.M., Tarasov A.L., Kuli-zade A.M., Tyrlov A.A. // Ibid. P. 153.
- 20. Кустов Л.М., Тарасов А.Л., Кустов А.Л. // ЖФХ. 2021. V. 95. № 9. P. 1339. https://doi.org/10.31857/S0044453721090119
- 21. Ouvang C., Li Y., Li J. // Catalysts. 2019. V. 9. № 1. P. 44. https://doi.org/10.3390/catal9010044
- 22. Fu С.M., Korchak V.N., Hall W.Keith // J. Catal. 1981. V. 68. P. 166. https://doi.org/10.1016/0021-9517 (81)90049-X
- 23. Winter E.R.S. // Ibid. 1974. V. 34. P. 431. https://doi.org/10.1016/0021-9517 (74)90056-6
- 24. Reuben B.G., Linnett J.W. // Trans. Faraday Soc. 1959. V. 55. P. 1543.
- 25. Wood B.R., Reiner J.A., Bell A.T. et al. // J. Catal. 2004. V. 224. P. 148. https://doi.org/10.1016/j.jcat.2004.02.025
- 26. Yakovlev A.L., Zhidomirov G.M., van Santen R.A. // Catal. Lett. 2001. V. 75. P. 45.
- 27. Bulushev D.A., Kiwi-Minsker L., Renken A. // J. Catal. 2004. V. 222. P. 389. https://doi.org/10.1016/j.jcat.2003.11.012
- 28. Zhdanov V.P. // Surf. Rev. Lett. 2009. V. 16. № 5. P. 757. https://doi.org/10.1142/S0218625X09013116
- 29. Ryder J.A., Chakroborty A.K., Bell A.T. // J. Phys. Chem. B. 2002. V. 106. P. 7059. https://doi.org/10.1021/jp014705e
- 30. Ryder J.A, Chakroborty A.K, Bell A.T. // J. Catal. 2003. V. 220. P. 84. https://doi.org/10.1016/S0021-9517 (03)00275-6
- 31. Дохликова Н.В., Озерин С.А., Доронин С.В. и др. // Хим. физика. 2022. Т. 41. № 6. С. 72. https://doi.org/10.31857/S0207401X22060024
- 32. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2022. Т. 41. № 7. С. 76. https://doi.org/10.31857/S0207401X22070044
- 33. Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. № 7. С. 63. https://doi.org/10.31857/S0207401X20070067
- 34. Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67. https://doi.org/10.31857/S0207401X21070025