- PII
- 10.31857/S0207401X24040065-1
- DOI
- 10.31857/S0207401X24040065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 4
- Pages
- 43-52
- Abstract
- The energy pathways of possible decomposition and isomerization reactions of iso-propyl (i-C3H7) and n-propyl (n-C3H7) radicals have been studied by computational methods of quantum chemistry. B3LYP, M062X, MP2, and CBS-QB3 methods are used to localize stationary points on the potential energy surface of a system containing propyl radicals. A number of intermediate compounds formed during the isomerization and decomposition of propyl radicals have been identified, and information has been obtained on their structure and thermochemical parameters. Based on the results of the research, a diagram of the energy levels of the system under consideration was constructed.
- Keywords
- пропильные радикалы пропан пропилен окисление поверхность потенциальной энергии диаграмма энергетических уровней
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Ushakova A., Zatsepin V., Varfolomeev M., Emelyanov D. // J. Combust. 2017. V. 11. Article 2526596. https://doi.org/10.1155/2017/2526596
- 2. Манташян А.А. // Хим. физика. 2021. Т. 40. № 4. С. 18. https://doi.org/10.31857/S0207401X21040105
- 3. Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D., Tavadyan L.A., Strekova L.N., Arutyunov V.S. // Pet. Chem. 2020. V. 60. № 3. P. 316. https://doi.org/10.1134/S0965544120030172
- 4. Grigoryan R.R., Arsentev S.D. // Ibid. 2020. V. 60. № 2. P. 187. https://doi.org/10.1134/S096554412002005X
- 5. Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 6. С. 7. https://doi.org/10.31857/S0207401X22060097.
- 6. Арсентьев С.Д., Тавадян Л.А., Брюков М.Г., Паланкоева А.С., Беляев А.А., Арутюнов В.С. // Хим. физика. 2022. Т. 41. № 11. С. 3. https://doi.org/10.31857/S0207401X22110024.
- 7. Озерский А.В., Старостин А.Д., Арутюнов В.С. // Горение и взрыв. 2022. Т. 15. № 1. С. 30. https://doi.org/10.30826/CE22150104.
- 8. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- 9. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 10. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- 11. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
- 12. Zhao Y., Truhlar D.G. // Acc. Chem. Res. 2008. V. 41. P. 157. https://doi.org/10.1021/ar700111a
- 13. Frisch M.J., Head-Gordon M., Pople J.A. // Chem. Phys. Lett. 1990. V. 166. № 3. P. 275. https://doi.org/10.1016/0009-2614 (90)80029-D
- 14. Head-Gordon M., Pople J.A., Frisch M.J. // Ibid. 1988. V. 153. № 6. P. 503. https://doi.org/10.1016/0009-2614 (88)85250-3
- 15. Montgomery Jr. J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // J. Chem. Phys. 1999. V. 110. P. 2822.
- 16. Nyden M.R., Petersson G.A. // Ibid. 1981. № 4. V. 75. P. 1843.
- 17. Petersson G.A., Al-Laham M.A. // Ibid. 1991. V. 94. № 9. P. 6081.
- 18. Petersson G.A., Tensfeldt T.G., Montgomery J.A. // Ibid. 1991. V. 94. P. 6091.
- 19. Montgomery Jr. J.A., Frisch M.J., Ochterski J.W., Petersson G.A. // Ibid. 2000. V. 112. № 15. P. 6532. https://doi.org/10.1063/1.481224
- 20. Arsentev S.D., Mantashyan A.A. // React. Kinet. Catal. Lett. 1980. V. 13. № 2. P. 125. https://doi.org/10.1007/BF02074183
- 21. Mantashyan A.A. Khachatryan L.A. Niazyan O.M., Arsentev S.D. // Combust. and Flame. 1981. V. 43. P. 221. https://doi.org/10.1016/0010-2180 (81)90022-5
- 22. Манташян А.А., Едигарян Н.Г., Хачатрян Л.А., Арсентьев С.Д. // Химия высоких энергий. 1989. Т. 23. № 1. С. 63.
- 23. Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187. https://doi.org/10.1134/S096554412002005X
- 24. Давтян А.Г., Манукян З.О., Арсентьев С.Д., Тавадян Л.А., Арутюнов В.С. // Хим. физика. 2023. Т. 42. № 4. С. 20. https://doi.org/10.31857/S0207401X23040052, EDN: MWHERN
- 25. Ghosh M.K., Elliott S.N., Somers K.P., Klippenstein S.J., Curran H.J. // Combust. and Flame. 2023. V. 257. Part 1. Article 112492. https://doi.org/10.1016/j.combustflame.2022.112492
- 26. Stark M.S. // J. Amer. Chem. Soc. 2000. V. 122. № 17. P. 4162. https://doi.org/10.1021/ja993760m
- 27. Huynh L.K., Carstensen H.-H., Dean A.M. // J. Phys. Chem. A. 2010. V. 114. № 24. P. 6594. https://doi.org/10.1021/jp1017218
- 28. Cord M., Husson B., Huerta J.C.L., et al. // Ibid. 2012. V. 116. № 50. P. 12214. https://doi.org/10.1021/jp309821z
- 29. Yang Zh., Lin X., Long B., Zhang W. // Chem. Phys. Lett. 2020. V. 749. P. 137442. https://doi.org/10.1016/j.cplett.2020.137442
- 30. Miller J.A., Klippenstein S.J. // J. of Phys. Chem. A. 2013. V. 117. № 13. P. 2718. https://doi.org/10.1021/jp312712p
- 31. Буравцев Н.Н. // Хим. физика. 2022. Т. 41. № 3. С. 3. https://doi.org/10.31857/S0207401X22030037
- 32. Ramalingam A., Panigrahy S., Fenard Y., et al. // Combust. and Flame. 2021. V. 223. № 1. P. 361. https://doi.org/10.1016/j.combustflame.2020.10.020
- 33. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J., E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16. Rev. C.01. Wallingford CT: Gaussian, Inc., 2016.
- 34. Dennington R., Keith T.A., Millam J.M. GaussView. Version 6.1. Shawnee Mission, KS: Semichem Inc., 2019.
- 35. Ditchfield R., Hehre W.J., Pople J.A. // J. Chem. Phys. 1971. V. 54. № 2. P. 724. https://doi.org/10.1063/1.1674902
- 36. Dunning T.H. // Ibid. 1989. V. 90. № 2. P. 1007. https://doi.org/10.1063/1.456153
- 37. Schlegel H.B. // J. Comput. Chem. 1982. V. 3. № 2. P. 214. https://doi.org/10.1002/jcc.540030212
- 38. Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. // Ibid. 1996. V. 17. № 1. P. 49. https://doi.org/10.1002/ (SICI)1096-987X(19960115)17: 13.0.CO;2-0
- 39. Peng C., Schlegel H.B. // Isr. J. Chem. 1993. V. 33. P. 449.
- 40. Fukui K. // Acc. Chem. Res. 1981. V. 14. P. 363. https://doi.org/10.1021/ar00072a001
- 41. Theory and Applications of Computational Chemistry: The First Forty Years. Eds. Dykstra C.E., Frenking G., Kim K.S., Scuseria G. Amsterdam: Elsevier, 2005. P. 195.
- 42. Chen W.-Y., Nguyen T.-N., Lin M.-C.et al. // Intern. J. Chem. Kinet. 2021. V. 53. № 5. P. 646. https://doi.org/10.1002/kin.21471
- 43. Falconer W.E., Sunder W.A. // Ibid. 1971. V. 3. № 6. P. 523. https://doi.org/10.1002/KIN.550030606
- 44. Lee E.P.F., Wright T.G. // J. Phys. Chem. A. 1999. V. 103. № 6. P. 721. https://doi.org/10.1021/jp983236m
- 45. Chicharro D.V., Marggi Poullain S., Zanchet A. et al. // Chem. Sci. 2019. V. 10. № 26. P. 6494. https://doi.org/10.1039/c9sc02140j
- 46. Zhu R.S., Xu Z.F., Lin, M.C. // J. Chem. Phys. 2004. V. 120. № 14. P. 6566. https://doi.org/10.1063/1.1665370
- 47. Baldwin J.E., Day L.S., Singer S.R. // J. Amer. Chem. Soc. 2005. V. 127. № 26. P. 9370. https://doi.org/10.1021/ja052678q