- PII
- 10.31857/S0207401X24040077-1
- DOI
- 10.31857/S0207401X24040077
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 4
- Pages
- 53-65
- Abstract
- Experimental studies of the combustion patterns of the ternary system (100 – x)(Ti + C) – x(Ti + 2B) of bulk density in powder and granular form used for the synthesis of composite ceramics TiC–TiB2 were carried out. The study shows that the dependence of the powder mixture combustion rate on the Ti + 2B content has a non-monotonic character, which is associated with the influence of impurity gas release on the combustion process. By removing the influence of impurity gas by granulation, a monotonic dependence with two characteristic sections was obtained. For the granulated mixture, an increase in the Ti + 2B content > 60 wt. % leads to a change from the conductive combustion mode to the convective one, accompanied by a sharp increase in the combustion rate. For the conductive combustion mode, the combustion rate of the substance inside the granule and the combustion transfer time from the granule to the granule were determined, which allowed us to estimate the inhibitory effect of impurity gas release on the combustion rate of powder mixtures of different composition. For the convective combustion mode, it was shown that a decrease in the content of the gasifying additive in the mixture (granulation with ethyl alcohol) led to an unexpected result: an increase in the combustion rate of the mixture. For compositions with (Ti + 2B) > 60 wt. % the combustion rate with counter filtration of impurity gases was determined for the first time, which made it possible to estimate the front rate increase according to the filtration combustion theory. According to XRD results, the combustion products of all compositions contain only two main phases TiC and TiB2.
- Keywords
- закономерности горения система Ti–C–B гранулирование кондуктивный и конвективный режимы примесное газовыделение самораспространяющийся высокотемпературный синтез
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Liu L., Aydinyan S., Minasyan T., Hussainova I. // Appl. Sci. 2020. V. 10. № 9. https://doi.org/10.3390/app10093283
- 2. Attar H., Bonisch M., Calin M., Zhang, L., Scudino S., Eckert J. // Acta Mater. 2014. V. 76. № 1. P. 13. https://doi.org/10.1016/j.actamat.2014.05.022
- 3. Xia M., Liu A., Hou Z. et al. // J. Alloys Compd. 2017. V. 728. № 4. P. 436. https://doi.org/10.1016/j.jallcom.2017.09.033
- 4. Rogachev A.S., Mukasyan A.S. Combustion for material synthesis. N.Y.: CRC Press, Taylor and Francis Group, 2015.
- 5. Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73. https://doi.org/10.31857/S0207401X22030086
- 6. Рогачев С.А., Шкадинский К.Г., Кришеник П.М. // Хим. физика. 2022. Т. 41. № 8. С. 59. https://doi.org/10.31857/S0207401X22030098
- 7. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
- 8. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. AG, Cham. Switzerland: Springer International Publishing, 2017.
- 9. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
- 10. Мержанов А.Г., Мукасьян А.С. Твердопламенное горение. М.: Торус Пресс, 2007.
- 11. Мукасьян А.С., Шугаев В.А., Кирьяков Н.И. // Физика горения и взрыва. 1993. Т. 29. № 1. С. 9.
- 12. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2010. V. 19. P. 206. https://doi.org/10.3103/S1061386210030064
- 13. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 282. https://doi.org/10.1134/S0010508219030055
- 14. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. №. 2. P. 134. https://doi.org/10.3103/S106138621702011X
- 15. Сеплярский Б.С., Тарасов А.Г., Кочетков Р.А., Ковалев И.Д. // Физика горения и взрыва. 2014. Т. 50. № 3. С. 61. https://doi.org/10.1134/S0010508214030071
- 16. Vallauri D., Atias Adrian I.C., Chrysanthou A. // J. Eur. Ceram. Soc. 2008. V. 28. №. 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
- 17. Боровинская И.П., Прокудина В.К., Ратников В.И. // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2010. № 4. С. 26.
- 18. Borovinskaya I.P., Pityulin A.N. Self-Propagating High-Temperature Synthesis of Materials. London, United Kingdom: Taylor and Francis Ltd. 2002. P. 270–292.
- 19. Brodkin D., Kalidindi S., Barsoum M. Zavaliangos A. // J. Amer. Ceram. Soc. 1996. V. 79. №. 7. P. 1945.
- 20. Tijo D., Masanta M., // Surf. Coat. Technol. 2018. V. 344. №. 25. P. 579. https://doi.org/10.1016/j.surfcoat.2018.03.083
- 21. Qian J.C., Zhou Z.F., Zhang W.J., Li K.Y. et al. // Surf. Coat. Technol. 2015. V. 270. №. 25. P. 290. https://doi.org/10.1016/j.surfcoat.2015.02.043
- 22. Корчагин А.И., Гаврилов В.Е., Зарко А.Б. и др. // ФГВ. 2017. Т. 53. № 6. https://doi.org/10.15372/FGV20170607
- 23. Акопян А.Г., Долуханян С.К., Боровинская И.П. // Там же. 1978. № 3. С. 70.
- 24. Щербаков В.А., Питюлин А.Н. // Там же. 1983. № 5. С. 108.
- 25. Grigoryan Н.Е., Rogachev A.S, Sytschev А.Е. // Intern. J. Self-Propag. High-Temp. Synth. 1997. V. 6. № 1. P. 29.
- 26. Seplyarskii B.S., Kochetkov R.A., Lisina T.G., Rubtsov N.M., Abzalov N.I. // Combust. Flame. 2022. V. 236. P. 111811. https://doi.org/10.1016/j.combustflame.2021.111811
- 27. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2015. V. 24. P. 89. https://doi.org/10.3103/S1061386215020107
- 28. Nikogosov V.N., Nersesyan G.A., Shcherbakov V., Kharatyan S., Shteinberg A.S. // Ibid. 1999. V. 8. P. 321.
- 29. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г., Абзалов Н.И. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65. https://doi.org/10.15372/FGV20210107
- 30. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А., Лисина Т.Г. // Хим. физика. 2021. Т. 40. № 3. C. 23. https://doi.org/10.31857/S0207401X21030109
- 31. Сеплярский Б.С., Кочетков Р.А. // Хим. физика. 2017. Т. 36. № 9. С. 21. https://doi.org/10.7868/S0207401X17090126
- 32. Зенин А.А. Мержанов А., Несесян Г.А. // Физика горения и взрыва. 1981. № 1. С 79.
- 33. Lapshin O.V., Prokofev V.G., Smolyakov V.K. // Intern. J. Self-Propag. High-Temp. Synth. 2018. V. 27. № 1. P. 14. https://doi.org/10.3103/S1061386218010041
- 34. Алдушин А.П., Мержанов А.Г. Распространение тепловых волн в гетерогенных средах. Новосибирск: Наука, 1988.
- 35. Бабичев А.П., Бабушкина Н.А., Братсковский А.М. и др. Физические величины. Справочник. М.: Энергоатомиздат, 1991.