RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The effect of cobalt content and mechanical activation on combustion in the Ni + Al + Co system

PII
10.31857/S0207401X24040087-1
DOI
10.31857/S0207401X24040087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 4
Pages
66-73
Abstract
The effect of mechanical activation (MA) and cobalt content on the combustion velocity and maximum combustion temperature, elongation of samples during synthesis, the size of composite particles of the mixture after MA, phase composition and morphology of combustion products in the Ni + Al + Co system is investigated in this work. Activation of the Ni + Al + xCo mixture allowed the samples to burn at room temperature, with a cobalt content of up to 50 wt. %. An increase in the cobalt content in Ni + Al + xCo mixtures led to a decrease in the size of composite particles after MA, elongation of product samples and the maximum synthesis temperature. After MA, the elongation of the product samples and combustion velocity increased many times, the maximum synthesis temperature increased. With an increase in the cobalt content in the Ni + Al + Co mixture, combustion velocity first increases (at 10% Co), then decreases. Solid solutions based on NiAl and Ni3Al intermetallides were synthesized by the SHS method.
Keywords
горение механическая активация интерметаллиды алюминид никеля система Ni + Al + Co самораспространяющийся высокотемпературный синтез
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Kelly S.C., Thadhani N.N. // J. Appl. Phys. 2016. V. 119. P. 95903. https://doi.org/10.1063/1.4942931
  2. 2. Pogozhev Yu.S., Sanin V.N., Ikornikov D.M. et al. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 3. P. 186. https://doi.org/10.3103/S1061386216030092
  3. 3. Sanin V.N., Ikornikov D.M., Andreev D.E. et al. // Ibid. 2014. V. 23. № 4. P. 232. https://doi.org/10.3103/S1061386214040098
  4. 4. Сеплярский Б.С., Абзалов Н.И. Кочетков Р.А. и др. // Хим. физика. 2021. Т. 40. № 3. С. 23. https://doi.org/10.31857/S0207401X2103010925
  5. 5. Suryanarayana C. // Prog. Mater. Sci. 2001. V. 46. P. 1.
  6. 6. Wang J. // J. Alloys and Comp. 2008. V. 456. P. 139.
  7. 7. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
  8. 8. Кочетов Н.А., Сычев А.Е. // Физика горения и взрыва. 2020. Т. 56. № 5. С. 32. https://doi.org/10.15372/FGV20200502
  9. 9. Zoz H., Ren H. // InterCeram: Intern. Ceramic Rev. 2000. V. 49. №. 1. P. 24.
  10. 10. Lin Сh-K., Hong Sh-Sh., Lee P-Y. // Intermetallics. 2000. V. 8. № 9–11. P. 1043. https://doi.org/10.1016/S0966-9795 (00)00039-X
  11. 11. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39. https://doi.org/10.31857/S0207401X2207007X
  12. 12. Кочетов Н.А. // Физика горения и взрыва. 2022. Т. 58. № 6. C. 41. https://doi.org/10.15372/FGV20220604
  13. 13. Graf T., Felser C., Parkin S.S.P. // Prog. Solid State Chem. 2011. V. 39. № 1. P. 1. https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  14. 14. Lin W., Freeman A.J. // Phys. Rev. B. 1992. V. 45. № 1. P. 61. https://doi.org/10.1103/PhysRevB.45.61
  15. 15. Kimura Y., Miura S., Suzuki T. et al. //Materials Transactions. 1994. V. 35. № 11. Р. 800. https://doi.org/10.2320/matertrans1989.35.800
  16. 16. Kimura Y., Elmer H. Lee, Liu C.T. // Ibid. 1995. V. 36. № 8. Р. 1031. https://doi.org/10.2320/matertrans1989.36.1031
  17. 17. Tanaka Y., Ohmori T., Oikawa K. et al. // Mater. Trans. JIM. 2004. V. 45. № 2. Р. 427. https://doi.org/10.2320/matertrans.45.427
  18. 18. Oikawa K., Ota T., Gejima F. et al. // Ibid. 2001. V. 42. № 11. Р. 2472. https://doi.org/10.2320/matertrans.42.2472
  19. 19. Liu J.. Li J.G. // Mater. Sci. Eng. A. 2007. V. 454–455. P. 423. https://doi.org/10.1016/j.msea.2006.11.085
  20. 20. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 51. № 5. С. 77. https://doi.org/10.15372/FGV20150509
  21. 21. Кочетов Н.А., Сеплярский Б.С. // Физика горения и взрыва. 2020. Т. 56. № 3. С. 69. https://doi.org/10.15372/FGV20200307
  22. 22. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2023. Т. 42. № 3. С. 23. https://doi.org/10.31857/S0207401X23030081
  23. 23. Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов. М: Физматлит, 2012.
  24. 24. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Intern. J. Self-Propag. High-Temp. Synth. 2004. V. 13. № 3. P. 193.
  25. 25. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  26. 26. Кочетов Н.А. // Физика горения и взрыва. 2021. Т. 57. № 6. С. 32. https://doi.org/10.15372/FGV20210604
  27. 27. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210. https://doi.org/10.3103/S1061386216040105
  28. 28. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90. https://doi.org/10.3103/S1061386215020107
  29. 29. Сеплярский Б.С. // Докл. РАН. 2004. T. 396. № 5. C. 640.
  30. 30. Рогачев А.С. // Физика горения и взрыва. 2003. Т. 39. № 2. С. 38.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library