- PII
- 10.31857/S0207401X24060074-1
- DOI
- 10.31857/S0207401X24060074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 6
- Pages
- 64-71
- Abstract
- The paper presents the results of calculations of the length of ozone destruction chains in the lower stratosphere in HOx-, NOx- and ClOx - catalytic cycles, taking into account heterogeneous chemical reactions (GHR) involving particles of the Young layer. Taking into account these reactions leads to a change in the type of high-altitude profiles of the length of the chains in these cycles, calculated in the approximation of the absence of GHR. At the lower boundary of the Young layer, a degeneration of the chain destruction of ozone in the NOₓ cycle is observed, caused by a sharp decline in the concentrations of components of this family due to the capture of gas molecules N₂O₅. At the same time, there is an increase in the chain length in the HOx cycle by more than an order of magnitude due to a decrease in the concentrations of OH and HO₂ radicals and, as a result, a decrease in the rate of chain breakage with their participation. At high altitudes, the length of the ozone destruction chains, taking into account GHR, on the contrary, are higher; the acceleration of the destruction of O₃ by chain carriers in HOx and ClOx cycles affects. The increase in their concentrations is due to the reduced content of NO and NO₂ in the air. The considered effect of GHR practically disappears at the upper boundary of the Young layer due to the evaporation of particles.
- Keywords
- озон скорость длина цепи слой Юнге гетерогенные химические реакции
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187; https://doi.org/10.1038/nature03671
- 2. Kulmala M., Pirjola U., Mäkelä U. // Nature. 2000. V. 404. № 6773. P. 66; https://doi.org/10.1038/35003550
- 3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016. 1152 p.
- 4. Salawitch R.J., Wofsy S.C., Wennberg P.O. et al. // Geophys. Res. Let. 1994. V. 21. № 23. P. 2547; https://doi.org/10.1029/94GL02781
- 5. Ларин И.К. // Хим. физика. 2017. Т. 36. № 3. С. 87; https://doi.org/10.7868/S0207401X17030074
- 6. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2016. Т. 35. № 9. С. 76; https://doi.org/10.7868/S0207401X16090077
- 7. Кумпаненко И.В., Иванова Н.А., Дюбанов М.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 48; https://doi.org/10.31857/S0207401X21070049
- 8. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023, Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
- 9. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81; https://doi.org/10.31857/S0207401X23040064
- 10. Borrmann S., Solomon S., Dye J.E. et al. // J. Geophys. Res. 1997. V. 102. D3. P. 3639; https://doi.org/10.1029/96JD02976
- 11. Lary D.J. // J. Geophys. Res. 1997. V. 102. D17. Р. 21515; https://doi.org/10.1029/97JD00912
- 12. Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project. Report. WMO, Geneva, 1995.
- 13. Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third revised and enlarged edition. Montreal. Canada.: Springer, 2005.
- 14. Jacob D.J. Introduction to Atmospheric Chemistry. Princeton: University Press, 1999.
- 15. Shimazaki T. Minor constituents in the middle atmosphere. Tokyo, Japan: Terra Scientific Publishing Company, 1985.
- 16. Junge C.E., Chagnon C.W. Manson J.E. // J. Geophys. Res. 1961. V. 66. № 7. Р. 2163; https://doi.org/10.1029/JZ066i007p₀2163
- 17. Turco R.P., Whitten R.C., Toon O.B. // Rev. Geophys. 1982. V. 20. № 2. P. 233; https://doi.org/10.1029/RG020i002p₀0233
- 18. Larin I.K. // Atmospheric and Climate Sciences. 2013. V.3. № 1. P. 141; https://doi.org/10.4236/acs.2013.310¹⁶
- 19. Eremina I.D., Chubarova N.E., Aloyan A.E., Arutyunyan V.O., Larin I.K., Yermakov A.N. // Izv. Atmos. Ocean. Phys. 2015. Т. 51. № 6. P. 624; https://doi.org/10.1134/S0001433815050047
- 20. Voigt C., Schlager H., Luo B.P. et al. // Atmos. Chem. Phys. 2005. V. 5. № 5. P. 1371; https://doi.org/10.5194/acp-5-1371-2005
- 21. http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml
- 22. Schwartz S.E., Freiberg J.E. // Atmos. Envir. A. 1981. V. 15. № 7. P. 1129; https://doi.org/10.1016/0004-6981 (81)90303-6
- 23. Myhre G., Berglen T.F., Myhre C.L.E. et al. // Tellus. 2004. V. 56B. P. 294; https://doi.org/10.1111/j.1600-0889.2004.00106.x
- 24. http://www.aim.env.uea.ac.uk/aim/aim.php
- 25. Shi Q., Jayne J.T., Kolb C.E. et al. // J. Geophys. Res. 2001. V. 106. P. 24259; https://doi.org/10.1029/2000jd000181
- 26. Hanson D.R., Ravishankara A.R., Solomon S. // J. Geophys. Res A. 1994. V. 99. D2. P. 3615; https://doi.org/10.1029/93JD02932
- 27. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
- 28. Carslaw K.S., Peter T., Clegg S.L. // Rev. Geophys. 1997. V. 35. № 2. P. 125; https://doi.org/10.1029/97RG00078