ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Влияние частиц слоя юнге на длину цепи разрушения озона в атмосфере

Код статьи
10.31857/S0207401X24060074-1
DOI
10.31857/S0207401X24060074
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 43 / Номер выпуска 6
Страницы
64-71
Аннотация
В работе приводятся результаты расчетов длины цепей разрушения озона в нижней стратосфере в каталитических HOx-, NOx-, ClOx- циклах с учетом гетерогенных химических реакций (ГХР) с участием частиц слоя Юнге. Учет этих реакций приводит к изменению вида высотных профилей длины цепей в этих циклах, рассчитанных в приближении отсутствия ГХР. На нижней границе слоя Юнге наблюдается вырождение цепного разрушения озона в NOx-цикле, вызванное резким спадом концентраций компонентов этого семейства, обусловленным захватом газовых молекул N₂O₅. При этом наблюдается рост длины цепи в HOx-цикле более чем на порядок величины из-за снижения концентраций радикалов ОН и НО₂ и, как результат, спада скорости обрыва цепей с их участием. На бóльших высотах длины цепей разрушения озона с учетом ГХР, напротив, оказываются выше; сказывается ускорение разрушения O₃ переносчиками цепи в HOx- и ClOx-циклах. Рост их концентраций обусловлен пониженным содержанием в воздухе NO и NO₂. Рассматриваемое влияние ГХР практически исчезает на верхней границе слоя Юнге вследствие испарения частиц.
Ключевые слова
озон скорость длина цепи слой Юнге гетерогенные химические реакции
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187; https://doi.org/10.1038/nature03671
  2. 2. Kulmala M., Pirjola U., Mäkelä U. // Nature. 2000. V. 404. № 6773. P. 66; https://doi.org/10.1038/35003550
  3. 3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016. 1152 p.
  4. 4. Salawitch R.J., Wofsy S.C., Wennberg P.O. et al. // Geophys. Res. Let. 1994. V. 21. № 23. P. 2547; https://doi.org/10.1029/94GL02781
  5. 5. Ларин И.К. // Хим. физика. 2017. Т. 36. № 3. С. 87; https://doi.org/10.7868/S0207401X17030074
  6. 6. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2016. Т. 35. № 9. С. 76; https://doi.org/10.7868/S0207401X16090077
  7. 7. Кумпаненко И.В., Иванова Н.А., Дюбанов М.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 48; https://doi.org/10.31857/S0207401X21070049
  8. 8. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023, Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
  9. 9. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81; https://doi.org/10.31857/S0207401X23040064
  10. 10. Borrmann S., Solomon S., Dye J.E. et al. // J. Geophys. Res. 1997. V. 102. D3. P. 3639; https://doi.org/10.1029/96JD02976
  11. 11. Lary D.J. // J. Geophys. Res. 1997. V. 102. D17. Р. 21515; https://doi.org/10.1029/97JD00912
  12. 12. Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project. Report. WMO, Geneva, 1995.
  13. 13. Brasseur G., Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third revised and enlarged edition. Montreal. Canada.: Springer, 2005.
  14. 14. Jacob D.J. Introduction to Atmospheric Chemistry. Princeton: University Press, 1999.
  15. 15. Shimazaki T. Minor constituents in the middle atmosphere. Tokyo, Japan: Terra Scientific Publishing Company, 1985.
  16. 16. Junge C.E., Chagnon C.W. Manson J.E. // J. Geophys. Res. 1961. V. 66. № 7. Р. 2163; https://doi.org/10.1029/JZ066i007p₀2163
  17. 17. Turco R.P., Whitten R.C., Toon O.B. // Rev. Geophys. 1982. V. 20. № 2. P. 233; https://doi.org/10.1029/RG020i002p₀0233
  18. 18. Larin I.K. // Atmospheric and Climate Sciences. 2013. V.3. № 1. P. 141; https://doi.org/10.4236/acs.2013.310¹⁶
  19. 19. Eremina I.D., Chubarova N.E., Aloyan A.E., Arutyunyan V.O., Larin I.K., Yermakov A.N. // Izv. Atmos. Ocean. Phys. 2015. Т. 51. № 6. P. 624; https://doi.org/10.1134/S0001433815050047
  20. 20. Voigt C., Schlager H., Luo B.P. et al. // Atmos. Chem. Phys. 2005. V. 5. № 5. P. 1371; https://doi.org/10.5194/acp-5-1371-2005
  21. 21. http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/software/Socrates/Socrates.thredds.xml
  22. 22. Schwartz S.E., Freiberg J.E. // Atmos. Envir. A. 1981. V. 15. № 7. P. 1129; https://doi.org/10.1016/0004-6981 (81)90303-6
  23. 23. Myhre G., Berglen T.F., Myhre C.L.E. et al. // Tellus. 2004. V. 56B. P. 294; https://doi.org/10.1111/j.1600-0889.2004.00106.x
  24. 24. http://www.aim.env.uea.ac.uk/aim/aim.php
  25. 25. Shi Q., Jayne J.T., Kolb C.E. et al. // J. Geophys. Res. 2001. V. 106. P. 24259; https://doi.org/10.1029/2000jd000181
  26. 26. Hanson D.R., Ravishankara A.R., Solomon S. // J. Geophys. Res A. 1994. V. 99. D2. P. 3615; https://doi.org/10.1029/93JD02932
  27. 27. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
  28. 28. Carslaw K.S., Peter T., Clegg S.L. // Rev. Geophys. 1997. V. 35. № 2. P. 125; https://doi.org/10.1029/97RG00078
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека