RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Statistical analysis of flux enhancements of energetic electrons in the low-latitudinal ionosphere according to the data from the NOAA/POES and MetOp satellites from 1998 to 2022 years

PII
10.31857/S0207401X24060117-1
DOI
10.31857/S0207401X24060117
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 6
Pages
105-116
Abstract
The intense precipitation of energetic electrons from the Earth’s radiation belt (ERB) is one of the most important sources of ionization in the ionosphere and atmosphere. We have carried out a large-scale statistical analysis of data from continuous low-orbit satellite observations of solar-cycle variations in the flux enhancements of the ERB electrons with energy >30 keV at an altitude of 850 km, acquired from the NOAA/POES and MetOp fleet in the interval from 1998 to 2022. We have found and described basic features of artificial failures in the spaceborn database with high-time resolution measurements in the interval from 2014 to 2022. Data correction was done. It was shown that the annual number of days with the electron flux enhancements increases rapidly within three years after the solar-cycle maximum and reaches its greatest value near the middle of the declining phase of solar activity. Then the event occurrence begins to decrease within an 8-year interval, including the minimum, rising and maximum phases of the solar cycle. The minimum occurrence of the events is achieved at minimum solar activity.
Keywords
ионосфера радиационный пояс Земли солнечный цикл сбои спутниковых данных
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Голубков Г.В., Дмитриев А.В., Суворова А.В. и др. // Хим. физика. 2019. Т. 38. № 10. С. 72; https://doi.org/10.1134/S0207401X19100042
  2. 2. Фролов В.Л., Куликов Ю.Ю., Троицкий А.В. // Хим. физика. 2022. Т. 41. № 10. С. 38; https://doi.org/10.31857/S0207401X22100053
  3. 3. Голубков Г.В., Берлин А.А., Дьяков Ю.А. и др. // Хим. физика. 2023. Т. 42. № 10. C. 64; https://doi.org/10.31857/S0207401X23100072
  4. 4. Klimenko M.V., Klimenko V.V., Sukhodolov T.V. et al. // Adv. Space Res. 2023. V. 71. № 11. P. 4576; https://doi.org/10.1016/j.asr.2023.01.012
  5. 5. Бахметьева Н.В., Жемяков И.Н. // Хим. физика. 2022. Т. 41. № 10. С. 65; https://doi.org/10.31857/S0207401X2210003X
  6. 6. Suvorova A.V., Tsai L.C., Dmitriev A.V. // Planet. Space Sci. 2012. V. 60. № 1. P. 363; https://doi.org/10.1016/j.pss.2011.11.001
  7. 7. Suvorova A.V., Dmitriev A.V., Tsai L.C. et al. // J. Geophys. Res.: Space Phys. 2013. V. 118. № 7. P. 4672; https://doi.org/10.1002/jgra.50439
  8. 8. Suvorova A.V., Huang C.M., Dmitriev A.V. et al. // J. Geophys. Res.: Space Phys. 2016. V. 121. № 6. P. 5880; https://doi.org/10.1002/2016JA022622
  9. 9. Dmitriev A.V., Suvorova A.V., Klimenko M.V. et al. // J. Geophys. Res.: Space Phys. 2017. V. 122. № 2. P. 2398; https://doi.org/10.1002/2016JA023260
  10. 10. Голубков М.Г., Суворова А.В., Дмитриев А.В. и др. // Хим. физика. 2020. Т. 39. № 10. С. 69; https://doi.org/10.31857/S0207401X20100064
  11. 11. Suvorova A.V., Huang C.M., Matsumoto H. et al. // J. Geophys. Res.: Space Phys. 2014. V. 119. № 11. P. 9283; https://doi.org/10.1002/2014JA020349
  12. 12. Evans D.S., Greer M.S. // NOAA Technical Memorandum. Ver. 1.4. Boulder: Space Environment Center, 2004.
  13. 13. NOAA / POES Space Environment Monitor [Электронный ресурс]; https://www.ngdc.noaa.gov/stp/satellite/poes/
  14. 14. Suvorova A.V., Dmitriev A.V. Cyclonic and Geomagnetic Storms: Predicting Factors, Formation and Environmental Impacts / Ed. Banks V.P. N.Y.: NOVA Sci. Publ., 2015. P. 19.
  15. 15. Suvorova A.V. // J. Geophys. Res.: Space Phys. 2017. V. 122. № 12. P. 12274; https://doi.org/10.1002/2017JA024556
  16. 16. Dmitriev A.V., Suvorova A.V., Ghosh S. et al. // Atmosphere. 2022. V. 13. № 2. 322; https://doi.org/10.3390/atmos13020322
  17. 17. Suvorova A.V. // Universe. 2023. V. 9. № 8. 374; https://doi.org/10.3390/universe9080374
  18. 18. Голубков М.Г., Дмитриев А.В., Суворова А.В., Голубков Г.В. // Хим. физика. 2022. Т. 41. № 5. C. 84; https://doi.org/10.31857/S0207401X22050065
  19. 19. Selesnick R.S., Su Y.J., Sauvaud J.A. // J. Geophys. Res.: Space Phys. 2019. V. 124. № 7. P. 5421; https://doi.org/10.1029/2019JA026718
  20. 20. Suvorova A.V., Dmitriev A.V., Parkhomov V.A. // Ann. Geophys. 2019. V. 37. № 6. P. 1223; https://doi.org/10.5194/angeo-37-1223-2019
  21. 21. Dmitriev A.V., Suvorova A.V., Veselovsky I.S. // Handbook on Solar Wind: Effects, Dynamics and Interactions / Ed. Johannson H.E. N.Y.: NOVA Sci. Publ., 2009. P. 81; https://doi.org/10.48550/arXiv.1301.2929
  22. 22. Borovsky J.E., Yakymenko K. // J. Geophys. Res.: Space Phys. 2017. V. 122. № 3. P. 2973–2998; https://doi.org/10.1002/2016JA023625
  23. 23. Гинзбург Е.А., Зинкина М.Д., Писанко Ю.В. // Геомагнетизм и аэрономия. 2023. Т. 63. № 6. С. 751; https://doi.org/10.31857/S0016794023600072
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library