RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The role of third-body collision efficiency in autoignition of hydrogen–air mixtures

PII
10.31857/S0207401X24070071-1
DOI
10.31857/S0207401X24070071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 7
Pages
73-82
Abstract
Numerical simulations of autoignition of lean (6% H2), stoichiometric, and rich (90% H2) hydrogen–air mixtures have been performed to examine the influence of third-body efficiency (chaperon efficiency, CE) on the value of ignition delay, τ. The temperature ranges explored in the computations are 850–1000 K for P0 = 1 bar and 1000–1200 K for P0 = 6 bar. By using a detailed kinetic mechanism, it has been found that the sensitivity of ignition delay to CE is the highest for the reaction step H + O2 + M = HO2 + M, which can lead to a variation in τ by a factor of 2 to 3. A pressure increase or deviation from stoichiometry reduces the sensitivity. The influence of CE is qualitatively different and weaker for the reaction step OH + OH + M = H2O2 + M.
Keywords
водородно-воздушная смесь численное моделирование химическая кинетика задержка воспламенения детальный кинетический механизм эффективность по соударению с третьим телом
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Яковенко И. С., Медведков И. С., Киверин А. Д. // Хим. физика. 2022. Т. 41. № 3. С. 85.
  2. 2. Yakovenko I., Kiverin A. // Fire. 2023. V. 6. P. 239.
  3. 3. Киверин А. Д., Медведков И. С., Яковенко И. С. // Хим. физика. 2022. Т. 41. № 11. С. 33.
  4. 4. Nikitin V.F., Mikhalchenko E.V., Stamov L.I., Tyurenkova V.V., Smirnov N.N. // Acta Astronaut. 2023. V. 213. P. 156.
  5. 5. Smirnov N.N., Azatyan V.V., Nikitin V.F. et al. // Intern. J. Hydrogen Energy. 2024. V. 49. Pt. B. P. 1315.
  6. 6. Smirnov N.N., Nikitin V.F., Mikhalchenko E.V., Sta mov L.I., Tyurenkova V.V. // Intern. J. Hydrogen Energy. 2024. V. 49. Pt. B. P. 495.
  7. 7. Saxena P., Williams F.A. // Combust. and Flame. 2006. V. 145. P. 316.
  8. 8. Konnov A.A. // Combust. and Flame. 2008. V. 152. № 4. P. 507.
  9. 9. Hong Z., Davidson D.F., Hanson R.K. // Combust. and Flame. 2011. V. 158. № 4. P. 633.
  10. 10. Keromnes A., Metcalfe W.K., Heufer K.A. et al. // Combust. and Flame. 2013. V. 160. P. 995.
  11. 11. Schonborn A., Sayad P., Konnov A.A., Klingmann J. // Intern. J. Hydrogen Energy. 2014. V. 39. № 23. P. 12166.
  12. 12. Hashemi H., Christensen J.M., Gersen S., Glarborg P. // Proc. Combust. Inst. 2015. V. 35. P. 553.
  13. 13. Smith G.P., Tao Y., Wang H. // Foundational Fuel Chemistry Model. Ver. 1.0 (FFCM-1), 2016. https://web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.html
  14. 14. Власов П.А., Смирнов В.Н., Тереза А.М. // Хим. физика. 2016. Т. 35. № 6. С. 35.
  15. 15. Jin S., Shu B., He X., Fernandes R., Li L. // Fuel. 2021. V. 303. № 121291.
  16. 16. Zhang Y., Fu J., Xie M., Liu J. // Intern. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5799.
  17. 17. Тереза А.М., Агафонов Г.Л., Андержанов Э.К., Бетев А.С., Медведев С.П., Хомик С.В. // Хим. физика. 2022. Т. 41. № 8. С. 66.
  18. 18. Olm C., Zsely I.G., Palvolgyi R. et al. // Combust. and Flame. 2014. V. 161. № 9. P. 2219.
  19. 19. Konnov A.A. // Combust. Flame. 2019. V. 203. P. 14.
  20. 20. Weydahl T., Poyyapakkam M., Seljeskog M., Haugen N.E.L. // Intern. J. Hydrogen Energy. 2011. V. 36. № 18. P. 12025.
  21. 21. Skrebkov O.V. Kostenko S.S., Smirnov A.L. // Intern. J. Hydrogen Energy. 2020. V. 45. P. 3251.
  22. 22. Кузнецов Н.М. Кинетика мономолекулярных реакций. М.: Наука, 1982.
  23. 23. Baulch D.L., Bowman C.T., Cobos C.J. et al. // J. Phys. Chem. Ref. Data. 2005. V. 34. № 3. P. 757.
  24. 24. Sanchez A.L., Williams F.A. // Progr. Energy Combust. Sci. 2014. V. 41. P. 1.
  25. 25. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2023. Т. 42. № 3. С. 70.
  26. 26. Ranzi E., Frassoldati A., Grana R. et al. // Progr. Energy Combust. Sci. 2012. V. 38. № 4. P. 468.
  27. 27. Vlasov P.A., Kusnetsov N.M., Petrov Y.P., Ture tskii S.V. // Proc. 24th ICDERS (Intern.). Taiwan, Taipei, 2013. Paper 153. http://www.icders.org/ICDERS2013/abstracts/ICDERS2013-0153.pdf
  28. 28. CHEMKIN-Pro 15112. CK-TUT-10112-1112-UG-1. Reaction Design: San Diego, 2011.
  29. 29. Grune J., Sempert K., Haberstroh H., Kuznetsov M., Jordan T. // J. Loss Prevent. Proc. Industries. 2013. V. 26. P. 317.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library