- PII
- 10.31857/S0207401X24070086-1
- DOI
- 10.31857/S0207401X24070086
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 7
- Pages
- 83-90
- Abstract
- The regularities of catalytic ignition of deuterium–air mixtures above the surface of metallic rhodium at pressures of 1–2 atm and temperatures of 20–250 °C using hyperspectrometers in the range of 400–1650 nm and high-speed filming have been established. It is established that the catalytic ignition of deuterium–air mixtures in the studied temperature range is observed at a deuterium content of more than 12%; and at a deuterium content of less than 12%, only intense heating of the catalytic wire is observed. It is shown that the initial ignition source occurs on the surface of the reactor. In subsequent experiments, under the same conditions, the location of the original center changes. It has been found that the upper limit of the catalytic ignition above the D2–air mixture is noticeably lower than the lower ignition limit of the H2–air mixture. Thus, D2 is more combustible than H2 over the surface of Rh at a pressure above 1 atm. The limits of catalytic ignition are even lower than 20 °C, although the flame velocity in hydrogen–air mixtures and the flame temperature in these mixtures of the same composition are much higher than those of deuterium–air mixtures. The nature of the detected kinetic inverse isotope effect is probably determined by the high level of activity of rhodium deuteride in relation to the deuterium oxidation reaction.
- Keywords
- воспламенение предел каталитического воспламенения дейтерий воздух кинетический обратный изотопный эффект гиперспектрометр скоростная съемка
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Jewell L., Davis B. // Appl. Catal., A. 2006. V. 310. P. 1. https://doi.org/10.1016/j.apcata.2006.05.012
- 2. Worsham J.E., Wilkinson M.K, Shull C.G. // Chem. Solids. 1957. V. 3. P. 303.
- 3. Chen H., Liu F.-S. // Phys. Lett. A. 1989. V. 137. P. 485.
- 4. Rubtsov N.M., Chernysh V.I., Tsvetkov G.I., Troshin K.Ya. // Combust. and Flame. 2020. V. 218. P. 179.
- 5. Wesley F. Table of recommended rate constants occurring in combustion. Washington, D.C.: U.S. Dept. of Commerce, National Bureau of Standards, 1980.
- 6. Fleischmann M., Pons S. // J. Electroanal. Chem. Interfacial Electrochem. 1989. V. 261. P. 301.
- 7. Berlinguette C.P., Chiang Y.M., Munday J.N. et al. // Nature. 2019. V. 570. P. 45. https://doi.org/10.1038/s41586-019-1256-6
- 8. Shilov A.E., Shul’pin G.B. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Dordrecht: Springer, 2001.
- 9. Трошин К.Я., Рубцов Н.М., Цветков Г.И. и др. // Хим. физика. 2022. Т. 41. С. 74. https://doi.org/10.31857/S0207401X22080131
- 10. Трошин К.Я., Рубцов Н.М., Цветков Г.И. и др. // Хим. физика. 2023. Т. 42. № 3. С. 79. https://doi.org/10.31857/S0207401X23030184
- 11. Родионов И.Д.., Родионов А.И., Ведешин Л.А. и др. // Изв. РАН. Физика атмосферы и океана. 2014. Т. 50. № 6. С. 989. https://doi.org/10.1134/S0001433814090175
- 12. Калинин А.П., Орлов А.Г., Родионов А.И., Трошин К.Я. // Физико-химическая кинетика в газовой динамике. 2009. Т. 8. http://chemphys.edu.ru/issues/2009-8/articles/202/
- 13. Калинин А.П., Трошин К.Я. Орлов А.Г., Родионов А.И. // Датчики и системы. 2008. № 12. С. 19.
- 14. Rubtsov N.M., Troshin K.Ya., Alymov M.I. // Catalytic Ignition of Hydrogen and Hydrogen–Hydrocarbon Blends Over Noble Metals. Cham: Springer, 2023. P. 153.
- 15. Chalet D., Mahe A., Migaud J., Hetet J.-F. // Appl. Energy. 2011. V. 88. P. 2988.
- 16. Трошин К.Я., Рубцов Н.М., Цветков Г.И. и др. // Хим. физика. 2022. Т. 41. № 1. С. 25. https://doi.org/10.31857/S0207401X220101629
- 17. Трошин К.Я., Рубцов Н.М., Цветков Г.И. и др. // Хим. физика. 2023. Т. 42. № 8. C. 74. https://doi.org/10.31857/S0207401X23080125
- 18. Lewis B., von Elbe G. Combustion, Explosions and Flame in Gases. New York, London: Academic Press, 1987.
- 19. Крешков А.П. Основы аналитической химии. Т. 1. Качественный анализ. М.: Химия, 1970. https://www.spectralcalc.com/blackbody_calculator/blackbody.php
- 20. Wang M., An H., Cai W., Shao X. // Chemosensors. 2023. V. 11. P. 37. https://doi.org/10.3390/chemosensors11010037