- PII
- 10.31857/S0207401X24070097-1
- DOI
- 10.31857/S0207401X24070097
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 7
- Pages
- 91-101
- Abstract
- A study on the neutralization of sulfur compounds during the filtration combustion of model mixture compositions containing iron sulfide or copper sulfate by adding marble (CaCO3) was carried out. It has been experimentally shown that during burning model charge compositions with additions of both iron sulfide and copper sulfate, replacing chemically inert sapphire with marble leads to a decrease in combustion temperature by approximately 150–200 °C. At the same time, the content of CO2 in gaseous products increases, and the concentrations of CO and H2 decrease. The greatest effect on the absorption of sulfur-containing substances when adding marble was shown in experiments where sulfur was present in the fuel in sulfide form: the addition of 50% marble made it possible to capture 72% of the initial sulfur content, and for compositions with 90% marble in the charge, 85%. The absorption of sulfur compounds formed during the combustion of model mixture compositions with copper sulfate is much worse. When the charge contains 50% and 85% marble, sulfur-containing compounds were absorbed by only 19% and 24%, respectively.
- Keywords
- газификация угля серосодержащие газы нейтрализация мрамор фильтрационное горение
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Huang H., Shi C. // Energies. 2023. V. 16. № 2. P. 857. https://doi.org/10.3390/en16020857
- 2. Rashid M.I., Isah U.A., Athar M., Benhelal E. // ChemBioEng Rev. 2023. V. 10. № 5. P. 841. https://doi.org/10.1002/cben.202200023
- 3. Gómez J., Neumann T., Guerrero F., Toledo M. // Fuel. 2022. V. 307. № 121739. https://doi.org/10.1016/j.fuel.2021.121739
- 4. Xu G., Ou J., Wei H. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 108475. https://doi.org/10.1016/j.jece.2022.108475
- 5. Tereza A.M., Kozlov P.V., Gerasimov G.Y. et al. // Acta Astronaut. 2023. V. 204. P. 705. https://doi.org/10.1016/j.actaastro.2022.11.001
- 6. Roslyakov P.V., Kondratieva O.E. // IOP Conf. Ser.: Earth Environ. 2022. V. 1061. № 012035. https://doi.org/10.1088/1755-1315/1061/1/012035
- 7. Xiong X., Yu S., Qin D., Tan H., Lu X. // J. Energy Inst. 2022. V. 105. P. 133. https://doi.org/10.1016/j.joei.2022.08.009
- 8. Vassilev S.V., Vassileva C.G. // J. Hazard. Mater. 2023. V. 457. № 131850. https://doi.org/10.1016/j.jhazmat.2023.131850
- 9. Gopinathan P., Jha M., Singh A.K. et al. // Fuel. 2022. V. 316. № 123376. https://doi.org/10.1016/j.fuel.2022.123376
- 10. Xi Z., Xi K., Lu L., Zhang M. // Fuel. 2023. V. 331. № 125756. https://doi.org/10.1016/j.fuel.2022.125756
- 11. Li L., Cheng L., Wang B., Ma Z., Zhang W. // J. Energy Inst. 2023. V. 111. № 101403. https://doi.org/10.1016/j.fuel.2022.125756
- 12. de Oliveira D.C., Lora E.E., Venturini O.J., Maya D.M., Garcia-Pérez M. // Renew. Sust. Energ. Rev. 2023. V. 172. № 113047. https://doi.org/10.1016/j.rser.2022.113047
- 13. Кислов В.М., Цветкова Ю.Ю., Цветков М.В., Пилипенко Е.Н., Салганская М.В. // Хим. физика. 2021. Т. 40. № 8. С. 19. https://doi.org/10.31857/S0207401X21080057
- 14. Kumar L., Jana S.K. // Rev. Chem. Eng. 2022. V. 38. № 7. С. 843. https://doi.org/10.1515/revce-2020-0029
- 15. Wang X., Zhang R., Li Q., Mi J., Wu M. // Fuel. 2023. V. 332. № 126052. https://doi.org/10.1016/j.fuel.2022.126052
- 16. Üresin E., Ateş M., Akgün F. // Intern. J. Oil, Gas Coal Technol. 2022. V. 31. № 2. P. 166. https://doi.org/10.1504/IJOGCT.2022.125370
- 17. Кислов В.М., Цветкова Ю.Ю., Цветков М.В. и др. // Физика горения и взрыва. 2023. Т. 59. № 2. С. 83. https://doi.org/10.15372/FGV20230210
- 18. Кислов В.М., Цветкова Ю.Ю., Глазов С.В. и др. // Хим. физика. 2020. Т. 39. № 8. С. 64. https://doi.org/10.31857/S0207401X20080038
- 19. Xing G., Wang W., Zhao S., Qi L. // Environ. Sci. Pollut. Res. 2023. V. 30. P. 76471. https://doi.org/10.1007/s11356-023-27872-8
- 20. Chang J.Y., Liu M., Wan J., Shi G.W., Li T. // Energy Rep. 2023. V. 9. P. 85. https://doi.org/10.1016/j.egyr.2023.04.032
- 21. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sust. Energ. Rev. 2023. V. 177. № 113213. https://doi.org/10.1016/j.rser.2023.113213
- 22. Боровик К.Г., Луценко Н.А. // Физика горения и взрыва. 2022. Т. 58. № 3. С. 40. https://doi.org/10.15372/FGV20220304
- 23. Кислов В.М., Цветков М.В., Зайченко А.Ю. и др. // Хим. физика. 2023. Т. 42. № 8. С. 39. https://doi.org/10.31857/S0207401X2308006X
- 24. Беляев А.А., Ермолаев Б.С. // Хим. физика. 2023. Т. 42. № 8. С. 3. https://doi.org/10.31857/S0207401X23080034
- 25. Liu L., Liu H., Cui M., Hu Y., Wang J. // Fuel. 2013. V. 112. P. 687. https://doi.org/10.1016/j.fuel.2012.06.048
- 26. Wang J., Tomita A. // Energy fuels. 2003. V. 17. № 4. P. 954. https://doi.org/10.1021/ef020251o
- 27. El-Houte S., Ali M.E.S., Sørensen O.T. // Thermochim. acta. 1989. V. 138. № 1. P. 107. https://doi.org/10.1016/0040-6031 (89)87245-4
- 28. Gadalla A.M. // Int. J. Chem. Kinet. 1984. V. 16. № 6. P. 655. https://doi.org/10.1002/kin.550160604
- 29. Kanari N., Menad N.E., Ostrosi E. et al. // Metals. 2018. V. 8. № 12. P. 1084. https://doi.org/10.3390/met8121084
- 30. Pérez Bernal J.L., Bello M.A. // Ind. Eng. Chem. Res. 2003. V. 42. № 5. P. 1028. https://doi.org/10.1021/ie020426h
- 31. Han Y.Q., Yang R.M., Dong Y., Tong H.L. // J. Therm. Anal. Calorim. 2022. V. 147. № 22. P. 12431. https://doi.org/10.1007/s10973-022-11477-3
- 32. Recelj T., Golob J. // Process Saf. Environ. Prot. 2004. V. 82. № 5. P. 371. https://doi.org/10.1205/psep.82.5.371.44188
- 33. Xia X., Zhang L., Li Z. et al. // J. Environ. Manage. 2022. V. 301. № 113855. https://doi.org/10.1016/j.jenvman.2021.113855
- 34. Jia X., Wang Q., Cen K., Chen L. // Fuel. 2016. V. 163. P. 157. https://doi.org/10.1016/j.fuel.2015.09.054
- 35. Lyngfelt A., Leckner B. // Chem. Eng. Sci. 1989. V. 44. № 2. P. 207. https://doi.org/10.1016/0009-2509 (89)85058-4
- 36. Yan Z.Q., Wang Z.A., Wang X.F. et al. // Trans. Nonferrous Met. Soc. China. 2015. V. 25. № 10. P. 3490. https://doi.org/10.1016/S1003-6326 (15)63986-3
- 37. Salgansky E.A., Kislov V.M., Glazov S.V., Salgan skaya M.V. // J. Combust. 2016. V. 2016. № 9637082. https://doi.org/10.1155/2016/9637082
- 38. Salgansky E.A., Zaichenko A.Y., Podlesniy D.N., Salganskaya M.V., Toledo M. // Intern. J. Hydrog. Energy. 2017. V. 42. № 16. P. 11017. https://doi.org/10.1016/j.ijhydene.2017.03.056