RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

The structure of DNA in anabiotic and mummified Escherichia coli cells

PII
10.31857/S0207401X24070102-1
DOI
10.31857/S0207401X24070102
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 7
Pages
102-110
Abstract
The structural organization of DNA in “stressed” (with increased stress resistance), anabiotic and mummified cells obtained by introducing 4-hexylresorcinol in different concentrations at different stages of cell culture growth was studied using the synchrotron radiation diffraction technique. Experimental studies allow us to conclude that 4-hexylresorcinol is the initiator of the transition of cells into an anabiotic and mummified state in the stationary stage of growth. In the prestationary stage, in the studied concentration range, 4-hexylresorcinol initiates the transition of cells into a mummified state, but not into an anabiotic state, which indicates that DNA is unprepared for the crystallization process in these bacteria. The structure of DNA inside a cell in an anabiotic dormant state (almost complete absence of metabolism) and dormant state (starvation stress) coincide (form nanocrystalline structures). Data indicate the universality of DNA condensation or the universality of DNA protection by the Dps protein in the dormant state, regardless of the type of stress. The mummified state (complete absence of metabolism, irreversible to life) is very different in structure (has no order within the cell).
Keywords
ДНК бактерии Escherichia coli 4-гексилрезорцин, анабиотические клетки мумифицированные клетки дифракция синхротронного излучения
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Grosberg A.Y., Khokhlov A.R.// Statistical physics of macromolecules. N.Y.: AIP, 1994.
  2. 2. Verma S.C., Qian Z., Adhya S.L. // PLoS. Genet. 2019. V. 15. № 12. e1008456. https://doi.org/10.1371/journal.pgen.1008456
  3. 3. Бухарин О.В., Гинцбург А.Л., Романова Ю.М., Эль-Регистан Г.И. Механизмы выживания бактерий. М.: Медицина, 2005.
  4. 4. Ткаченко А.Г. Молекулярные механизмы стрессорных ответов у микроорганизмов. Екатеринбург: Уро РАН, 2012.
  5. 5. Шрёдингер Э. Что такое жизнь с точки зрения физики? М.: РИМИС, 2009.
  6. 6. Minsky A., Shimoni E., Frenkiel-Krispin D. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. P. 50. https://doi.org/10.1038/nrm700
  7. 7. Сузина Н.Е., Мулюкин А.Л., Лойко Н.Г. и др. // Микробиология. 2001. Т. 70. № 5. С. 776. https://doi.org/10.1023/A:1013183614830
  8. 8. Loiko N., Danilova Y., Moiseenko A. et al. // PLoS ONE. 2020. V. 15. № 10. https://doi.org/10.1371/journal.pone.0231562
  9. 9. Синицын Д.О., Лойко Н.Г., Гуларян С.К. и др.// Хим. физика. 2017. Т. 36. № 9. С. 59.
  10. 10. Крупянский Ю.Ф., Лойко Н.Г., Синицын Д.О. и др. // Кристаллография. 2018. Т. 63. № 4. С. 572.
  11. 11. Крупянский Ю.Ф. // Хим. физика. 2021. Т. 40. № 3. С. 60. https://doi.org/10.31857/S0207401X21030079
  12. 12. Крупянский Ю.Ф., Генералова А.А., Коваленко В.В. и др. // Хим. физика. 2023. T. 42. № 6. С. 3. https://doi.org/10.31857/S0207401X23060067
  13. 13. Zwietering M.H., Jongenburger I., Rombouts F.M., van ‘t Riet K. // Appl. Environ. Microbio. 1990. V. 56. № 6. P. 1875. https://doi.org/10.1128/aem.56.6.1875-1881.1990
  14. 14. Moiseenko A., Loiko N., Sokolova O.S., Krupyan skii Y.F. // Methods Mol. Bio. 2022. V. 2516. P. 143. https://doi.org/10.1007/978-1-0716-2413-5_9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library