- PII
- 10.31857/S0207401X24080045-1
- DOI
- 10.31857/S0207401X24080045
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 8
- Pages
- 31-41
- Abstract
- The influence of mechanical activation of the system 100−x(Ti+C)+x(Ti+2B) on the character of combustion of samples with different macrostructure: pressed compacts with relative density of 0.53-0.6 and bulk density granules of 0.6–1.6 mm size has been investigated. It was found that mechanical activation of powders leads to a gradual decrease in the combustion rate of pressed samples with increasing Ti+2B content in the mixtures (a descending dependence), and increasing Ti+2B content in compacts from nonactivated powders leads to an increase in the combustion rate (an ascending dependence). The obtained results contradict the theoretical ideas about the influence of mechanical activation on the combustion process, according to which the combustion rate should increase. One of the important factors influencing the change in the combustion rate is the release of impurity gases. For the first time the influence of mechanical activation on the character of combustion of granular mixtures was experimentally determined. It was found that the combustion rates of granular mixtures are higher than those of powder mixtures for all the compositions studied. It is shown that granulated mixtures from activated powder have a combustion rate on average 3 times higher compared to granules from nonactivated powder, and the dependence of the combustion rate on the mass content of Ti+2B has a local minimum, which is probably related to the peculiarities of the mechanical activation process.
- Keywords
- самораспространяющийся высокотемпературный синтез механическая активация закономерности горения макрокинетика система TiC–TiB2 гранулирование примесное газовыделение
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Мержанов А.Г., Мукасьян А.С. Твердопламенное горение. М.: Торус Пресс, 2007.
- 2. Levashov E.A., Mukasyan A.S., Rogachev A.S. et al // Intern. Mater. Rev. 2017. V.62. № 4. P. 203. https://doi.org/10.1080/09506608.2016.1243291
- 3. Nersisyan H.H., Lee J.H., Ding J.R. et al. // Prog. Energy Combust. Sci. 2017. V. 63. P. 79. https://doi.org/10.1016/j.pecs.2017.07.002
- 4. Morsi K. J. Mater. Sci. 2012. V. 47. № 1. P. 68. https://doi.org/10.1007/s13632-013-0071-y
- 5. Levashov E.A., Kosayanin V.I., Krukova, L.M. et al. // Surf. Coat. Technol. 1997. V. 92. № 1–2. P. 34. https://doi.org/10.1016/S0257-8972 (96)03083-6
- 6. Yang F., Qin Q., Shi T. et al. // Ceram. Intern. 2019. V. 45. № 4. P. 4243. https://doi.org/10.1016/j.ceramint.2018.11.096
- 7. Vallauri D., Adrian I.A., Chrysanthou A. // J. Eur. Ceram. 2008. V. 28. №. 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
- 8. Zhang Y., Wang B., Dong B. et al. // Tribol. Lett. 2023. V. 71. № 84. https://doi.org/10.1007/s11249-023-01756-x
- 9. Pugacheva N., Kryuchkov D., Bykova T. et al // Materials. 2023. V. 16. № 8. P. 3204. https://doi.org/10.3390/ma16083204
- 10. Ziemnicka-Sylwester M. // Materials. 2013. V. 6. № 5. P. 1903. https://doi.org/10.3390/ma6051903
- 11. Yang Y.F., Wang H.Y., Liang Y.H. et al. // Mater. Sci. Eng. A. 2007. V. 445–446. № 15. P. 398. https://doi.org/10.1016/j.msea.2006.09.062
- 12. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. Cham: Springer, 2017.
- 13. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
- 14. Nikogosov V.N., Nersesyan G.A., Sherbakov V.A. et al. // Int. J. Self-Propag. High-Temp. Synth. 1999. V. 8. № 3. P. 321.
- 15. Беляев А.А., Ермолаев Б.С. // Хим. физика. 2023. Т. 42. № 8. С. 3. https://doi.org/10.31857/S0207401X23080034
- 16. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А. и др. // Хим. физика. 2021. Т. 40. № 3. С. 23. https://doi.org/10.31857/S0207401X21030109
- 17. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. // Физика горения и взрыва. 2019. Т. 55. № 3. С.57. https://doi.org/10.15372/FGV20190307
- 18. Рогачев А.С. // Успехи химии. 2019. Т. 88. № 9. С. 875. https://doi.org/10.1070/RCR4884
- 19. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 55. № 5. С. 77. https://doi.org/10.15372/FGV20150509
- 20. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. №. 9. С. 39. https://doi.org/10.31857/S0207401X20090058
- 21. Matveev A., Promakhov V., Nikitin P. et al. // Materials. 2022. V. 15. №. 7. P. 2668. https://doi.org/10.3390/ma15072668
- 22. Корчагин М.А., Гаврилов А.И., Зарко В.Е. и др. // Физика горения и взрыва. 2017. Т. 53. № 6. С. 58. https://doi.org/10.15372/FGV20170607
- 23. Кочетов Н.А. // Физика горения и взрыва. 2022. Т. 58. № 2. С. 49. https://doi.org/10.15372/FGV20220205
- 24. Кочетов Н.А., Сеплярский Б.С., Щукин А.С. // Физика горения и взрыва. 2019. Т. 55. № 3. С. 63. https://doi.org/10.15372/FGV20190308
- 25. Maglia F., Anselmi-Tamburini U., Deidda C. et al. // J. Mater. Sci. 2004. V. 39. P. 5227. https://doi.org/10.1023/b:jmsc.0000039215.28545.2f
- 26. Bogatov Y.V., Shcherbakov V.A. // Russ. J. Non-Ferr. 2021. V. 62. P. 248. https://doi.org/10.3103/S1061386223030032
- 27. Кочетов Н.А., Вадченко C.Г. // ФГВ. 2015. Т. 51. № 4. С. 77. https://doi.org/10.15372/FGV20150410
- 28. Kochetov N.A., Sytschev A.E. // Mater. Chem. Phys. 2021. V. 257. https://doi.org/10.1016/j.matchemphys.2020.123727
- 29. Aldushin A.P., Martemyanova T.M., Merzhanov A.G. et al. // Combust. Explos. Shock Waves. 1972. V. 8. № 2. P. 159. https://doi.org/10.1007/BF00740444
- 30. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
- 31. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. № 2. P. 134. https://doi.org/10.3103/S106138621702011X
- 32. Vorotilo S., Kiryukhantsev-Korneev V., Seplyarskii B.S. et al. // Crystals. 2020. V. 10. № 5. P. 412. https://doi.org/10.3390/cryst10050412
- 33. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65. https://doi.org/10.15372/FGV20210107
- 34. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2021. V. 57. № 3. P. 88. https://doi.org/10.15372/FGV20210308