RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Influence of mechanical activation and impurity gas release on the macrokinetics of combustion and the product structure in the Ti–C–B system for pressed compacts and granulated mixtures

PII
10.31857/S0207401X24080045-1
DOI
10.31857/S0207401X24080045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
31-41
Abstract
The influence of mechanical activation of the system 100−x(Ti+C)+x(Ti+2B) on the character of combustion of samples with different macrostructure: pressed compacts with relative density of 0.53-0.6 and bulk density granules of 0.6–1.6 mm size has been investigated. It was found that mechanical activation of powders leads to a gradual decrease in the combustion rate of pressed samples with increasing Ti+2B content in the mixtures (a descending dependence), and increasing Ti+2B content in compacts from nonactivated powders leads to an increase in the combustion rate (an ascending dependence). The obtained results contradict the theoretical ideas about the influence of mechanical activation on the combustion process, according to which the combustion rate should increase. One of the important factors influencing the change in the combustion rate is the release of impurity gases. For the first time the influence of mechanical activation on the character of combustion of granular mixtures was experimentally determined. It was found that the combustion rates of granular mixtures are higher than those of powder mixtures for all the compositions studied. It is shown that granulated mixtures from activated powder have a combustion rate on average 3 times higher compared to granules from nonactivated powder, and the dependence of the combustion rate on the mass content of Ti+2B has a local minimum, which is probably related to the peculiarities of the mechanical activation process.
Keywords
самораспространяющийся высокотемпературный синтез механическая активация закономерности горения макрокинетика система TiC–TiB2 гранулирование примесное газовыделение
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Мержанов А.Г., Мукасьян А.С. Твердопламенное горение. М.: Торус Пресс, 2007.
  2. 2. Levashov E.A., Mukasyan A.S., Rogachev A.S. et al // Intern. Mater. Rev. 2017. V.62. № 4. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  3. 3. Nersisyan H.H., Lee J.H., Ding J.R. et al. // Prog. Energy Combust. Sci. 2017. V. 63. P. 79. https://doi.org/10.1016/j.pecs.2017.07.002
  4. 4. Morsi K. J. Mater. Sci. 2012. V. 47. № 1. P. 68. https://doi.org/10.1007/s13632-013-0071-y
  5. 5. Levashov E.A., Kosayanin V.I., Krukova, L.M. et al. // Surf. Coat. Technol. 1997. V. 92. № 1–2. P. 34. https://doi.org/10.1016/S0257-8972 (96)03083-6
  6. 6. Yang F., Qin Q., Shi T. et al. // Ceram. Intern. 2019. V. 45. № 4. P. 4243. https://doi.org/10.1016/j.ceramint.2018.11.096
  7. 7. Vallauri D., Adrian I.A., Chrysanthou A. // J. Eur. Ceram. 2008. V. 28. №. 8. P. 1697. https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  8. 8. Zhang Y., Wang B., Dong B. et al. // Tribol. Lett. 2023. V. 71. № 84. https://doi.org/10.1007/s11249-023-01756-x
  9. 9. Pugacheva N., Kryuchkov D., Bykova T. et al // Materials. 2023. V. 16. № 8. P. 3204. https://doi.org/10.3390/ma16083204
  10. 10. Ziemnicka-Sylwester M. // Materials. 2013. V. 6. № 5. P. 1903. https://doi.org/10.3390/ma6051903
  11. 11. Yang Y.F., Wang H.Y., Liang Y.H. et al. // Mater. Sci. Eng. A. 2007. V. 445–446. № 15. P. 398. https://doi.org/10.1016/j.msea.2006.09.062
  12. 12. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. Cham: Springer, 2017.
  13. 13. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
  14. 14. Nikogosov V.N., Nersesyan G.A., Sherbakov V.A. et al. // Int. J. Self-Propag. High-Temp. Synth. 1999. V. 8. № 3. P. 321.
  15. 15. Беляев А.А., Ермолаев Б.С. // Хим. физика. 2023. Т. 42. № 8. С. 3. https://doi.org/10.31857/S0207401X23080034
  16. 16. Сеплярский Б.С., Абзалов Н.И., Кочетков Р.А. и др. // Хим. физика. 2021. Т. 40. № 3. С. 23. https://doi.org/10.31857/S0207401X21030109
  17. 17. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. // Физика горения и взрыва. 2019. Т. 55. № 3. С.57. https://doi.org/10.15372/FGV20190307
  18. 18. Рогачев А.С. // Успехи химии. 2019. Т. 88. № 9. С. 875. https://doi.org/10.1070/RCR4884
  19. 19. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 55. № 5. С. 77. https://doi.org/10.15372/FGV20150509
  20. 20. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2020. Т. 39. №. 9. С. 39. https://doi.org/10.31857/S0207401X20090058
  21. 21. Matveev A., Promakhov V., Nikitin P. et al. // Materials. 2022. V. 15. №. 7. P. 2668. https://doi.org/10.3390/ma15072668
  22. 22. Корчагин М.А., Гаврилов А.И., Зарко В.Е. и др. // Физика горения и взрыва. 2017. Т. 53. № 6. С. 58. https://doi.org/10.15372/FGV20170607
  23. 23. Кочетов Н.А. // Физика горения и взрыва. 2022. Т. 58. № 2. С. 49. https://doi.org/10.15372/FGV20220205
  24. 24. Кочетов Н.А., Сеплярский Б.С., Щукин А.С. // Физика горения и взрыва. 2019. Т. 55. № 3. С. 63. https://doi.org/10.15372/FGV20190308
  25. 25. Maglia F., Anselmi-Tamburini U., Deidda C. et al. // J. Mater. Sci. 2004. V. 39. P. 5227. https://doi.org/10.1023/b:jmsc.0000039215.28545.2f
  26. 26. Bogatov Y.V., Shcherbakov V.A. // Russ. J. Non-Ferr. 2021. V. 62. P. 248. https://doi.org/10.3103/S1061386223030032
  27. 27. Кочетов Н.А., Вадченко C.Г. // ФГВ. 2015. Т. 51. № 4. С. 77. https://doi.org/10.15372/FGV20150410
  28. 28. Kochetov N.A., Sytschev A.E. // Mater. Chem. Phys. 2021. V. 257. https://doi.org/10.1016/j.matchemphys.2020.123727
  29. 29. Aldushin A.P., Martemyanova T.M., Merzhanov A.G. et al. // Combust. Explos. Shock Waves. 1972. V. 8. № 2. P. 159. https://doi.org/10.1007/BF00740444
  30. 30. Сеплярский Б.С. // Докл. АН. 2004. Т. 396. № 5. С. 640. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a
  31. 31. Seplyarskii B.S., Kochetkov R.A. // Intern. J. Self-Propag. High-Temp. Synth. 2017. V. 26. № 2. P. 134. https://doi.org/10.3103/S106138621702011X
  32. 32. Vorotilo S., Kiryukhantsev-Korneev V., Seplyarskii B.S. et al. // Crystals. 2020. V. 10. № 5. P. 412. https://doi.org/10.3390/cryst10050412
  33. 33. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 65. https://doi.org/10.15372/FGV20210107
  34. 34. Сеплярский Б.С., Кочетков Р.А., Лисина Т.Г. и др. // Физика горения и взрыва. 2021. V. 57. № 3. P. 88. https://doi.org/10.15372/FGV20210308
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library