- PII
- 10.31857/S0207401X24080056-1
- DOI
- 10.31857/S0207401X24080056
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 8
- Pages
- 42-48
- Abstract
- A study on the self-ignition of a propylene–oxygen–argon stoichiometric mixture with a volumetric argon content of 95% was carried out. The experiments were performed on a shock tube, which is part of the “Shock Tube” experimental complex of the Institute of Mechanics of Moscow State University, in conditions behind the reflected shock wave. The time dependences of signals from a piezoelectric pressure sensor, a thermoelectric detector and an optical section configured to record the radiation of electronically excited radicals OH• (l = 302 nm), CH• (l = 427 nm, and molecular carbon C2• (l = 553 nm) were analyzed. The ignition delay times τign were measured in the temperature range T = 1200–2460 K and pressures p = 4.5–25 atm. The data obtained are compared with the results of other authors.
- Keywords
- пропилен аргон ударная труба время задержки воспламенения термоэлектрический детектор
- Date of publication
- 15.08.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 42
References
- 1. Агафонов Г.Л., Тереза А.М. // Хим. физика. 2015. Т. 34. № 2. С. 49.
- 2. Lin K.C., Chiu C.-T. // Fuel. 2017. V. 203. P. 102. https://doi.org/10.1016/j.fuel.2017.04.064
- 3. Tay K.L., Yang W., Mohan B., Zhou H.A.D., Yu W. // Energy Conver. Manage. 2016. V. 108. P. 446. https://doi.org/10.1016/j.enconman.2015.11.018
- 4. Герасимов Г.Я., Туник Ю.В., Козлов П.В., Левашов В.Ю., Забелинский И.Е., Быкова Н.Г. // Хим. физика. 2021. Т. 40. № 8. С. 10.
- 5. Davis S.G., Law C.K., Wang H. // Combust. and Flame. 1999. V. 119. P. 375. https://doi.org/10.1016/S0010-2180 (99)00070-X
- 6. Киверин А.Д., Минаев К.О., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 8. С. 16.
- 7. Dong S., Zhang K., Senecal P.K. et al. // Proc. Combust. Inst. 2021. V. 38. P. 611. https://doi.org/10.1016/j.proci.2020.07.053
- 8. Liang X., Zhu S., Wang X., Wang K. // Fuel. 2021. V. 302. № 121130. https://doi.org/10.1016/j.fuel.2021.121130
- 9. Ramalingam A., Panigrahy S., Fenard Y., Curran H., Heufer K.A. // Combust. Flame. 2021. V. 223. P. 361. https://doi.org/10.1016/j.combustflame.2020.10.020
- 10. Jia J.-Y., Wen M., Zheng Z.-H., Yu X.-P., Yao Y.-Z., Tian Z.-Y. // Fuel. 2023. V. 353. № 129199. https://doi.org/10.1016/j.fuel.2023.129199
- 11. Burke S.M., Burke U., McDonagh R. et al. // Combust. and Flame. 2015. V. 162. P. 296. https://doi.org/10.1016/j.combustflame.2014.07.032
- 12. Котов М.А., Козлов П.В., Герасимов Г.Я. и др. // Хим. физика. 2022. Т. 41. № 8. С. 31.
- 13. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2020. Т. 39. № 8. С. 58.
- 14. Бревнов П.Н., Новокшонова Л.А., Крашенинников В.Г. и др. // Хим. физика. 2019. Т. 38. № 9. С. 54.
- 15. Hanson R.K., Davidson D.F. // Prog. Energy Combust. Sci. 2014. V. 44. P. 103. https://doi.org/10.1016/j.pecs.2014.05.001
- 16. Козлов П.В., Герасимов Г.Я., Левашов В.Ю., Акимов Ю.В., Забелинский И.Е., Быкова Н.Г. // Хим. физика. 2021. Т. 40. № 9. С. 35.
- 17. A Chemical Equilibrium Program for Windows. http://www.gaseq.co.uk/
- 18. Dong S., Zhang K., Senecal P.K. et al. // Proc. Combust. Inst. 2021. V. 38. P. 611. https://doi.org/10.1016/j.proci.2020.07.053
- 19. Shao J., Davidson D.F., Hanson R.K. // Fuel. 2018. V. 225. P. 370. https://doi.org/10.1016/j.fuel.2018.03.146
- 20. Carbone E., D’Isa F., Hecimovic A., Fantz U. // Plasma Sources Sci. Technol. 2020. V. 29. № 055003. https://doi.org/10.1088/1361-6595/ab74b4