RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Experimental study of a stoichiometric propylene–oxygen–argon mixture ignition behind a reflected shock wave

PII
10.31857/S0207401X24080056-1
DOI
10.31857/S0207401X24080056
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
42-48
Abstract
A study on the self-ignition of a propylene–oxygen–argon stoichiometric mixture with a volumetric argon content of 95% was carried out. The experiments were performed on a shock tube, which is part of the “Shock Tube” experimental complex of the Institute of Mechanics of Moscow State University, in conditions behind the reflected shock wave. The time dependences of signals from a piezoelectric pressure sensor, a thermoelectric detector and an optical section configured to record the radiation of electronically excited radicals OH (l = 302 nm), CH (l = 427 nm, and molecular carbon C2 (l = 553 nm) were analyzed. The ignition delay times τign were measured in the temperature range T = 1200–2460 K and pressures p = 4.5–25 atm. The data obtained are compared with the results of other authors.
Keywords
пропилен аргон ударная труба время задержки воспламенения термоэлектрический детектор
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
42

References

  1. 1. Агафонов Г.Л., Тереза А.М. // Хим. физика. 2015. Т. 34. № 2. С. 49.
  2. 2. Lin K.C., Chiu C.-T. // Fuel. 2017. V. 203. P. 102. https://doi.org/10.1016/j.fuel.2017.04.064
  3. 3. Tay K.L., Yang W., Mohan B., Zhou H.A.D., Yu W. // Energy Conver. Manage. 2016. V. 108. P. 446. https://doi.org/10.1016/j.enconman.2015.11.018
  4. 4. Герасимов Г.Я., Туник Ю.В., Козлов П.В., Левашов В.Ю., Забелинский И.Е., Быкова Н.Г. // Хим. физика. 2021. Т. 40. № 8. С. 10.
  5. 5. Davis S.G., Law C.K., Wang H. // Combust. and Flame. 1999. V. 119. P. 375. https://doi.org/10.1016/S0010-2180 (99)00070-X
  6. 6. Киверин А.Д., Минаев К.О., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 8. С. 16.
  7. 7. Dong S., Zhang K., Senecal P.K. et al. // Proc. Combust. Inst. 2021. V. 38. P. 611. https://doi.org/10.1016/j.proci.2020.07.053
  8. 8. Liang X., Zhu S., Wang X., Wang K. // Fuel. 2021. V. 302. № 121130. https://doi.org/10.1016/j.fuel.2021.121130
  9. 9. Ramalingam A., Panigrahy S., Fenard Y., Curran H., Heufer K.A. // Combust. Flame. 2021. V. 223. P. 361. https://doi.org/10.1016/j.combustflame.2020.10.020
  10. 10. Jia J.-Y., Wen M., Zheng Z.-H., Yu X.-P., Yao Y.-Z., Tian Z.-Y. // Fuel. 2023. V. 353. № 129199. https://doi.org/10.1016/j.fuel.2023.129199
  11. 11. Burke S.M., Burke U., McDonagh R. et al. // Combust. and Flame. 2015. V. 162. P. 296. https://doi.org/10.1016/j.combustflame.2014.07.032
  12. 12. Котов М.А., Козлов П.В., Герасимов Г.Я. и др. // Хим. физика. 2022. Т. 41. № 8. С. 31.
  13. 13. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2020. Т. 39. № 8. С. 58.
  14. 14. Бревнов П.Н., Новокшонова Л.А., Крашенинников В.Г. и др. // Хим. физика. 2019. Т. 38. № 9. С. 54.
  15. 15. Hanson R.K., Davidson D.F. // Prog. Energy Combust. Sci. 2014. V. 44. P. 103. https://doi.org/10.1016/j.pecs.2014.05.001
  16. 16. Козлов П.В., Герасимов Г.Я., Левашов В.Ю., Акимов Ю.В., Забелинский И.Е., Быкова Н.Г. // Хим. физика. 2021. Т. 40. № 9. С. 35.
  17. 17. A Chemical Equilibrium Program for Windows. http://www.gaseq.co.uk/
  18. 18. Dong S., Zhang K., Senecal P.K. et al. // Proc. Combust. Inst. 2021. V. 38. P. 611. https://doi.org/10.1016/j.proci.2020.07.053
  19. 19. Shao J., Davidson D.F., Hanson R.K. // Fuel. 2018. V. 225. P. 370. https://doi.org/10.1016/j.fuel.2018.03.146
  20. 20. Carbone E., D’Isa F., Hecimovic A., Fantz U. // Plasma Sources Sci. Technol. 2020. V. 29. № 055003. https://doi.org/10.1088/1361-6595/ab74b4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library