RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Numerical simulation of oxidative conversion of methane to synthesis gas in a reversed flow reactor

PII
10.31857/S0207401X24080065-1
DOI
10.31857/S0207401X24080065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
49-61
Abstract
A numerical model for the POX steam-oxygen conversion of methane to synthesis gas in a reversed flow non-premixed filtration combustion reactor with a reversed flow of steam-methane mixture and a continuous supply of oxygen to the reactor center is considered. The calculation was carried out for the oxygen/methane molar ratio 0.47 and steam/methane 0.5, i.e., in the parametric region close to the limit for the feasibility of the scheme. Various modes of initiation and control of flow reverse are considered, and dependences of the combustion temperature and the composition of products on the characteristics of the process are obtained. Comparison of the established cyclic mode of conversion with the predictions of the equilibrium model shows that kinetic constraints lead to a higher combustion temperature and incomplete conversion of methane. At high temperatures, the conversion proceeds via initial soot formation during the pyrolysis of methane and the subsequent reaction of soot with steam.
Keywords
конверсия метана синтез-газ инициирование процесса фильтрационное горение
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
40

References

  1. 1. Макарян И.А., Седов И.В., Никитин А.В., Арутюнов В.С. // Научный журнал Российского газового общества. 2020. № (1)24. С. 50.
  2. 2. Алдошин С.М., Арутюнов В.С., Савченко В.И., Седов И.В., Никитин А.В., Фокин И.Г. // Хим. физика. 2021. Т. 40. № 5. С. 46. https://doi.org/10.31857
  3. 3. Zagoruiko A.N. // Curr. Top. Catal. 2012. V. 10. P. 113.
  4. 4. Arutyunov V. // Rev. Chem. Eng. 2021. V. 37. № 1. P. 99. https://doi.org/10.1515/revce-2018-0057
  5. 5. Mujeebu M.A. // Appl. Energy. 2016. V. 173. P. 210. https://doi.org/10.1016/j.apenergy.2016.04.018
  6. 6. Футько С.И., Жданок С.А. Химия фильтрационного горения газов. Минск: Беларус. навука, 2004.
  7. 7. Kee R.J., Rupley F.M., Meeks E. et al. CHEMKIN-III: A Fortran Chemical Kinetics Package for the analysis of gas-phase chemical and plasma kinetics. SAND-96-8216 Report. Livermore, US: Sandia National Lab (SNL-CA), 1996.
  8. 8. Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M. GRI-Mech 3.0. Chicago, US: Gas Research Institute. http://www.me.berkeley.edu/gri_mech
  9. 9. Goodwin D., Moffat H.K., Speth R.L. Cantera: an Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.5.0, 2019. www.cantera.org.
  10. 10. Konnov A.A. http://homepages.vub.ac.be/~akonnov/
  11. 11. Hughes K.J., Turanyi T., Clague A.R., Pilling M.J. // Intern. J. Chem. Kinet. 2001. V. 33. P. 513. https://doi.org/10.1002/kin.1048
  12. 12. Fotovat F., Rahimpour M. // Intern. J. Hydrogen Energy. 2021. V. 46. № 37. P. 19312. https://doi.org/10.1016/j.ijhydene.2021.03.098
  13. 13. Карнаух А.А., Иванова А.Н. // Хим. физика. 2004. Т. 23. № 9. С. 13.
  14. 14. Костенко С.С., Полианчик Е.В., Карнаух А.А., Иванова А.Н., Манелис Г.Б. // Хим. физика. 2006. Т. 25. № 5. С. 43.
  15. 15. Дорофеенко С.О., Жирнов А.А., Полианчик Е.В., Салганский Е.А. Способ получения синтез-газа из водородсодержащего сырья в реакторе с обращаемым потоком и реактор для его осуществления: Патент РФ 2574464 // Б.И. 2016. № 4.
  16. 16. Dorofeenko S.O., Polianczyk E.V. // Chem. Eng. J. 2016. V. 292. P. 183. https://doi.org/10.1016/j.cej.2016.02.013
  17. 17. Polianczyk E.V, DorofeenkoS.O. // Intern. J. Hydrogen Energy. 2019. V. 44. № 8. Р. 4079.
  18. 18. Салганский Е.А., Цветков МВ., Зайченко А.Ю. и др. // Хим. физика. 2021. Т. 40. № 11. С. 14.
  19. 19. Kostenko S.S., Ivanova A.N., Karnaukh А.А., Polianczyk Е.V. // Сhem. Eng. Process.: Process Intensif. 2017. V. 122. Р. 473; https://doi.oig/10.1016/j.cep.2017.05.014
  20. 20. Дорофеенко С.О., Полианчик Е.В. // Хим.физика. 2022. Т. 41. № 3. С. 29; https://doi.oig/10.31857/S0207401X22030049
  21. 21. Fierro М., Requena Р., Salgansky Е., Toledo М. // Сhеm. Eng. J. 2021. V. 425. № 12. Р. 130178; https://doi.oig/10.1016/j.cej.2021.130178
  22. 22. Sung C.J, Li В., Law С.К. // 27th Sуmр. (Intern.) on Combust. 1998. V. 27. № 1. Р. 1523; https://www.princeton.edu/~cklaw/kinetics/slw001/
  23. 23. Mallard W.G., Westley F., Неrrоп J.T., Hampson R.F. NIST Chemical Kinetics Database. Gaithersbuig, US: NIST, 1994.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library