RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Acceleration ability of the mixtures of explosives with positive and negative oxygen balance

PII
10.31857/S0207401X24080076-1
DOI
10.31857/S0207401X24080076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
62-69
Abstract
The possibilities of increasing the acceleration ability (AA) of energetic materials due to creation of compositions combining high explosives (HE) with positive and negative oxygen balance are analyzed. For calculations, three relatively new compounds were selected as HE-oxidizers: 3,6-dinitro-1,4-bis(trinitromethyl)-1,4-dihydropyrazolo[4,3-c]pyrazole; 4,4′5,5′-tetranitro-2,2′-bis(trinitromethyl)-2Н,2′Н-3,3′-bipyrazole; 2-dinitromethyl-5-nitrotetrazole. HMX and CL-20 performed the function of HE-fuel. From the calculations it follows that the AA of HMX increases markedly with the addition of mentioned oxidizers, and the introduction of oxidizers into the composition with CL-20 leads to a slight increase in AA.
Keywords
взрывчатое вещество алюминий кислородный баланс метательная способность теплота взрыва
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
42

References

  1. 1. Андреев С.Г., Бабкин А.В., Баум Ф.А. и др. Физика взрыва. В 2-х т. / Под ред. Орленко Л.П. Т. 1. М.: Физматлит, 2002.
  2. 2. Методы исследования свойств материалов при интенсивных динамических нагрузках / Под ред. Жерноклетова М.В. Саров: РФЯЦ-ВНИИЭФ, 2003.
  3. 3. Hardesty D.R., Kennedy J.E. // Combust. and Flame. 1977. V. 28. № 1. P. 45.
  4. 4. Hornberg H. // Propellants, Explosives, Pyrotechnics. 1986. V. 11. P. 23.
  5. 5. Finger M., Lee E., Helm F. H. et al. // Proc. 6th Sympos. (Intern.) on Detonation. Arlington: ONR ACR-221, 1976. P. 710.
  6. 6. Gurney R.W. // Report BRL 405. Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD, USA, 1943.
  7. 7. Kamlet M.J., Finger M. // Combust. and Flame. 1979. V. 34. P. 213.
  8. 8. Koch A., Arnold N., Estermann M. // Propellants, Explosives, Pyrotechnics. 2002. V. 27. № 6. P. 365. https://doi.org/10.1002/prep.200290007
  9. 9. Danel J.-F., Kazandjian L. // Propellants, Explosives, Pyrotechnics. 2004. V. 29. № 5. P. 314. https://doi.org/10.1002/prep.200400060
  10. 10. Махов М.Н. // Горение и взрыв / Под. ред. Фролова С.М. М: Торус Пресс, 2008. Вып. 1. C. 93.
  11. 11. Махов М.Н. // Горение и взрыв. 2015. Т. 8. № 2. С. 256.
  12. 12. Давыдов В.Ю., Губин А.С. // Хим. физика. 2011. Т. 30. № 6. С. 49.
  13. 13. Гогуля М.Ф., Махов М.Н., Бражников М.А. и др. // Физика горения и взрыва. 2008. Т. 44. № 2. С. 85.
  14. 14. Махов М.Н. // Хим. физика. 2018. Т. 37. № 4. С. 51. https://doi.org/10.7868/S0207401X18040064
  15. 15. Махов М.Н., Архипов В.И. // Хим. физика. 2008. Т. 27. № 8. С. 36.
  16. 16. Махов М.Н. // Горение и взрыв. 2023. Т. 16. № 2. С. 110. https://doi.org/10.30826/CE23160209
  17. 17. Махов М.Н., Архипов В.И. // Физика горения и взрыва. 1989. Т. 25. № 3. С. 87.
  18. 18. Махов М.Н., Гогуля М.Ф., Долгобородов А.Ю. и др. // Физика горения и взрыва. 2004. Т. 40. № 4. С. 96.
  19. 19. Акимова Л.Н., Афанасьев Г.Т., Щетинин В.Г., Пепекин В.И. // Хим. физика. 2002. Т. 21. № 3. С. 93.
  20. 20. Дубовик А.В. // Хим. физика. 2021. Т. 40. № 8. С. 76. https://doi.org/10.31857/S0207401X21080021
  21. 21. Дубовик А.В. // Хим. физика, 2022. Т. 41. № 3. С. 49. https://doi.org/10.31857/S0207401X22030050
  22. 22. Дубовик А.В. // Хим. физика, 2023. Т. 42. № 3. С. 11. https://doi.org/10.31857/S0207401X23030056
  23. 23. Назин Г.М., Корсунский Б.Л., Казаков А.И., Набатова А.В., Самойленко Н.Г. // Хим. физика. 2023. Т. 42. № 3. С. 49. https://doi.org/10.31857/S0207401X23030123
  24. 24. Архипов В.И., Махов М.Н., Пепекин В.И. // Хим. физика. 1993. Т. 12. № 12. С. 1640.
  25. 25. Энергетические конденсированные системы. 3-е изд. / Под ред. Жукова Б.П. М.: Янус-К, 2000.
  26. 26. Sympson R.L., Urtiew P.A., Ornellas D.L. et al. // Propellants, Explosives, Pyrotechnics. 1997. V. 22. № 5. P. 249.
  27. 27. Иноземцев Я.О., Иноземцев А.В., Махов М.Н., Воробьёв А.Б., Матюшин Ю.Н. // Хим. физика. 2021. Т. 40. № 12. С. 39. https://doi.org/10.31857/S0207401X21120074
  28. 28. Mohammad K., Thaltiri V., Kommu N., Vargeese A.A. // Chem. Commun. 2020. V. 56. № 85. P. 12945. https://doi.org/10/1039/D0CC05704E
  29. 29. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 9. С. 45. https://doi.org/10.31857/S0207401X2209014X
  30. 30. Dalinger I.L., Suponitsky K.Yu., Shkineva T.K., Lempert D.B., Sheremetev A.B. // J. Mater. Chem. A. 2018. V. 6. № 30. P. 14780. https://doi.org/10.1039/C8TA05179H
  31. 31. Zhao X.X., Li S.H., Wang Y. et al. // J. Mater. Chem. A. 2016. V. 4. № 15. P. 5495. https://doi.org/10.1039/C6TA01501H
  32. 32. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 9. С. 52. https://doi.org/10.31857/S0207401X20090149
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library