RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Combustion regimes of hydrogen at its direct injection into the internal combustion engine chamber

PII
10.31857/S0207401X24080097-1
DOI
10.31857/S0207401X24080097
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
78-91
Abstract
The paper is dedicated to the analysis of processes in the combustion chamber of spark ignition engine under direct jet injection of hydrogen during compression stroke. By means of numerical modeling the features of hydrogen mixing with air and its combustion after the spark ignition at the instant when piston reaches top dead center (TDC) are investigated. Combustion regimes developing under the variation of injection pressure: from 20 to 140 atm, and start of injection, from 180° to 45° crank angle (CA) before TDC, are considered. In all cases the mass of hydrogen necessary for the formation of stoichiometric mixture with air during injection into the combustion chamber is supplied. It is received that the most uniform mixture by the instant of ignition is formed at advanced injection (180°–135° CA before TDC) under a relatively low pressure (20–60 atm). The ignition of uniform mixture in the conditions considered leads to detonation regime of combustion. Lower degree of mixture uniformity corresponds to slow, deflagration, regime of combustion. It is important to note that non-uniformity of mixture specifies the uncertainty of formation of a certain combustion regime depending on the local mixture composition in the vicinity of a spark. Herewith, the slowest combustion regime provides the maximum hydrogen combustion incompleteness, up to 8.2%. Generally, the considered ranges of injection pressure and start of injection lead to satisfactory levels of hydrogen combustion incompleteness, less than 4%.
Keywords
водород двигатель с искровым зажиганием прямой впрыск перемешивание недогорание численное моделирование
Date of publication
15.08.2024
Year of publication
2024
Number of purchasers
0
Views
38

References

  1. 1. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 8. С. 66. https://doi.org/10.31857/S0207401X2208012X
  2. 2. Медведев С.П., Максимова О.Г., Черепанова Т.Т. и др. // Хим. физика. 2022. Т. 41. № 11. С. 73. https://doi.org/10.31857/S0207401X22110085
  3. 3. Фролов С.М., Иванов В.С. // Хим. физика. 2021. Т. 40. № 4. С. 68. https://doi.org/10.31857/S0207401X21040075
  4. 4. Wei H., Hu Z., Ma J. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 34. P. 12905. https://doi.org/10.1016/j.ijhydene.2022.12.031
  5. 5. Duan Y., Sun B., Li Q. et al. // Energy Convers. Manag. 2023. V. 291. № 117267. https://doi.org/10.1016/j.enconman.2023.117267
  6. 6. Park C., Kim Y., Oh S. et al. // Intern. J. Hydrogen Energy. 2022. V. 47. № 50. P. 21552. https://doi.org/10.1016/j.ijhydene.2022.04.274
  7. 7. Fu Z., Gao W., Li Y. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 51. P. 19700. https://doi.org/10.1016/j.ijhydene.2023.02.041
  8. 8. Yosri M., Palulli R., Talei M. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 46. P. 17689. https://doi.org/10.1016/j.ijhydene.2023.01.228
  9. 9. Lai F., Sun B., Wang X. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 20. P. 7488. https://doi.org/10.1016/j.ijhydene.2022.11.091
  10. 10. Anticaglia A., Balduzzi F., Ferrara G. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 83. P. 32553. https://doi.org/10.1016/j.ijhydene.2023.04.339
  11. 11. Zhao F., Sun B., Yuan S. et al. // Intern. J. Hydrogen Energy. 2024. V. 49. Part B. P. 713. https://doi.org/10.1016/j.ijhydene.2023.09.039
  12. 12. Babayev R., Andersson A., Dalmau A.S., Im H.G., Johansson B. // Intern. J. Hydrogen Energy. 2021. V. 46. № 35. P. 18678. https://doi.org/10.1016/j.ijhydene.2021.02.223
  13. 13. Conaire M.O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K. // Intern. J. Chem. Kinet. 2004. V. 36. № 11. P. 603. https://doi.org/10.1002/kin.20036
  14. 14. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. М.: Наука, 1982.
  15. 15. Liberman M.A., Ivanov M.F., Valiev D.M., Eriksson L.E. // Combust. Sci. Technol. 2006. V. 178. № 9. P. 1613. https://doi.org/10.1080/00102200500536316
  16. 16. Зайченко В.М., Киверин А.Д., Смыгалина А.Е., Цыплаков А.И. // Изв. РАН. Энергетика. 2018. № 4. С. 87. https://doi.org/10.31857/S000233100002367-7
  17. 17. Смыгалина А.Е., Киверин А.Д., Зайченко В.М., Цыплаков А.И. // Инж.-физ. журн. 2022. Т. 95. № 1. С. 169. https://doi.org/10.1007/s10891-022-02478-y
  18. 18. Smygalina A.E., Kiverin A.D. // J. Zhejiang Uni. Sci. A. 2022. V. 23. № 10. P. 838. https://doi.org/10.1631/jzus.A2200217
  19. 19. Киверин А.Д., Смыгалина А.Е. // Теплофизика высоких температур. 2022. Т. 60. № 1. С. 103. https://doi.org/10.31857/S0040364422010197
  20. 20. Ivanov M.F., Kiverin A.D., Yakovenko I.S., Liberman M.A. // Intern. J. Hydrogen Energy. 2013. V. 38. № 36. P. 16427. https://doi.org/10.1016/j.ijhydene.2013.08.124
  21. 21. Киверин А.Д., Смыгалина А.Е., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 8. С. 9. https://doi.org/10.31857/S0207401X2008004X
  22. 22. Смыгалина А.Е., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 11. С. 63. https://doi.org/10.31857/S0207401X22110127
  23. 23. Heywood J.B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
  24. 24. Варнатц Ю., Маас У., Диббл Р. Горение. М.: Физматлит, 2006.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library