- PII
- 10.31857/S0207401X24080097-1
- DOI
- 10.31857/S0207401X24080097
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 8
- Pages
- 78-91
- Abstract
- The paper is dedicated to the analysis of processes in the combustion chamber of spark ignition engine under direct jet injection of hydrogen during compression stroke. By means of numerical modeling the features of hydrogen mixing with air and its combustion after the spark ignition at the instant when piston reaches top dead center (TDC) are investigated. Combustion regimes developing under the variation of injection pressure: from 20 to 140 atm, and start of injection, from 180° to 45° crank angle (CA) before TDC, are considered. In all cases the mass of hydrogen necessary for the formation of stoichiometric mixture with air during injection into the combustion chamber is supplied. It is received that the most uniform mixture by the instant of ignition is formed at advanced injection (180°–135° CA before TDC) under a relatively low pressure (20–60 atm). The ignition of uniform mixture in the conditions considered leads to detonation regime of combustion. Lower degree of mixture uniformity corresponds to slow, deflagration, regime of combustion. It is important to note that non-uniformity of mixture specifies the uncertainty of formation of a certain combustion regime depending on the local mixture composition in the vicinity of a spark. Herewith, the slowest combustion regime provides the maximum hydrogen combustion incompleteness, up to 8.2%. Generally, the considered ranges of injection pressure and start of injection lead to satisfactory levels of hydrogen combustion incompleteness, less than 4%.
- Keywords
- водород двигатель с искровым зажиганием прямой впрыск перемешивание недогорание численное моделирование
- Date of publication
- 15.08.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 38
References
- 1. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 8. С. 66. https://doi.org/10.31857/S0207401X2208012X
- 2. Медведев С.П., Максимова О.Г., Черепанова Т.Т. и др. // Хим. физика. 2022. Т. 41. № 11. С. 73. https://doi.org/10.31857/S0207401X22110085
- 3. Фролов С.М., Иванов В.С. // Хим. физика. 2021. Т. 40. № 4. С. 68. https://doi.org/10.31857/S0207401X21040075
- 4. Wei H., Hu Z., Ma J. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 34. P. 12905. https://doi.org/10.1016/j.ijhydene.2022.12.031
- 5. Duan Y., Sun B., Li Q. et al. // Energy Convers. Manag. 2023. V. 291. № 117267. https://doi.org/10.1016/j.enconman.2023.117267
- 6. Park C., Kim Y., Oh S. et al. // Intern. J. Hydrogen Energy. 2022. V. 47. № 50. P. 21552. https://doi.org/10.1016/j.ijhydene.2022.04.274
- 7. Fu Z., Gao W., Li Y. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 51. P. 19700. https://doi.org/10.1016/j.ijhydene.2023.02.041
- 8. Yosri M., Palulli R., Talei M. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 46. P. 17689. https://doi.org/10.1016/j.ijhydene.2023.01.228
- 9. Lai F., Sun B., Wang X. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 20. P. 7488. https://doi.org/10.1016/j.ijhydene.2022.11.091
- 10. Anticaglia A., Balduzzi F., Ferrara G. et al. // Intern. J. Hydrogen Energy. 2023. V. 48. № 83. P. 32553. https://doi.org/10.1016/j.ijhydene.2023.04.339
- 11. Zhao F., Sun B., Yuan S. et al. // Intern. J. Hydrogen Energy. 2024. V. 49. Part B. P. 713. https://doi.org/10.1016/j.ijhydene.2023.09.039
- 12. Babayev R., Andersson A., Dalmau A.S., Im H.G., Johansson B. // Intern. J. Hydrogen Energy. 2021. V. 46. № 35. P. 18678. https://doi.org/10.1016/j.ijhydene.2021.02.223
- 13. Conaire M.O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K. // Intern. J. Chem. Kinet. 2004. V. 36. № 11. P. 603. https://doi.org/10.1002/kin.20036
- 14. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. М.: Наука, 1982.
- 15. Liberman M.A., Ivanov M.F., Valiev D.M., Eriksson L.E. // Combust. Sci. Technol. 2006. V. 178. № 9. P. 1613. https://doi.org/10.1080/00102200500536316
- 16. Зайченко В.М., Киверин А.Д., Смыгалина А.Е., Цыплаков А.И. // Изв. РАН. Энергетика. 2018. № 4. С. 87. https://doi.org/10.31857/S000233100002367-7
- 17. Смыгалина А.Е., Киверин А.Д., Зайченко В.М., Цыплаков А.И. // Инж.-физ. журн. 2022. Т. 95. № 1. С. 169. https://doi.org/10.1007/s10891-022-02478-y
- 18. Smygalina A.E., Kiverin A.D. // J. Zhejiang Uni. Sci. A. 2022. V. 23. № 10. P. 838. https://doi.org/10.1631/jzus.A2200217
- 19. Киверин А.Д., Смыгалина А.Е. // Теплофизика высоких температур. 2022. Т. 60. № 1. С. 103. https://doi.org/10.31857/S0040364422010197
- 20. Ivanov M.F., Kiverin A.D., Yakovenko I.S., Liberman M.A. // Intern. J. Hydrogen Energy. 2013. V. 38. № 36. P. 16427. https://doi.org/10.1016/j.ijhydene.2013.08.124
- 21. Киверин А.Д., Смыгалина А.Е., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 8. С. 9. https://doi.org/10.31857/S0207401X2008004X
- 22. Смыгалина А.Е., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 11. С. 63. https://doi.org/10.31857/S0207401X22110127
- 23. Heywood J.B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- 24. Варнатц Ю., Маас У., Диббл Р. Горение. М.: Физматлит, 2006.