- PII
- 10.31857/S0207401X24080111-1
- DOI
- 10.31857/S0207401X24080111
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 8
- Pages
- 101-108
- Abstract
- The paper is devoted to the numerical analysis of the gaseous combustion process in a channel willed with the hydrogen-air mixture with the inflow of a fresh mixture seeded with microdroplets of water. The dynamics of microdroplets are described in the Lagrangian approximation, which makes it possible to identify the role of local interaction between the droplets and the flame front. It has been shown that the impact of droplets on the front can provoke the generation of disturbances of the flame front and intensify the development of front instability, thereby causing an integral increase in the combustion rate. Using spectral analysis of the structure of the front in the presence of microdroplets, the dynamics of the development of individual harmonics of front disturbances was analyzed and the mechanisms of evolution of the flame front under the influence of microdroplets of water were identified.
- Keywords
- горение газовзвесей микрокапли воды неустойчивость горения водород численное моделирование
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Thomas G.O., Jones A., Edwards M.J. // Combust. Sci. Technol. 1991. V. 80. Issue 1–3. P. 47. https://doi.org/10.1080/00102209108951776
- 2. Thomas G.O., Edwards M.J., Edwards D.H. // Combust. Sci. Technol. 1990. V. 71. Issue 4–6. P. 233. https://doi.org/10.1080/00102209008951634
- 3. van Wingerden K., Wilkins B., Bakken J., Pedersen G. // J. Loss. Prev. Process. Ind. 1995. V. 8. Issue 2. P. 61. https://doi.org/10.1016/0950-4230 (95)00007-N
- 4. Boeck L., Kink A., Oezdin D., Hasslberger J., Sattelmayer T. // Intern. J. Hydrogen Energy. 2015. V. 40. Issue 21. P. 6995. https://doi.org/10.1016/j.ijhydene.2015.03.129
- 5. Tsai S.S., Liparulo N.J. Fog inerting criteria for hydrogen/air mixtures, Tech. Rep. CONF-821026e. Palo Alto, CA, USA: Electric Power Research Inst. 1982.
- 6. Медведев С.П., Гельфанд Б.Е., Поленов А.Н., Хомик С.В. // Физика горения и взрыва. 2002. Т. 38. № 4. С. 381. https://doi.org/10.1023/A:1016277028276
- 7. Gieras M. // J. Loss. Prev. Process. Ind. 2008. V. 21. Issue 4. P. 472. https://doi.org/10.1016/j.jlp.2008.03.004
- 8. Zhang P., Zhou Y., Cao X., Gao X., Bi M. // J. Loss. Prev. Process. Ind. 2014. V. 29. Issue 1. P. 313. https://doi.org/10.1016/j.jlp.2014.03.014
- 9. van Wingerden K., Wilkins B. // J. Loss. Prev. Process. Ind. 1995. V. 8. Issue 2. P. 53. https://doi.org/10.1016/0950-4230 (95)00002-I
- 10. Thomas G.O., Brenton J.R. An investigation of factors of relevance during explosion suppression by water sprays. Tech. Rep. OTH 94 463. London, UK: The University College of Wales, 1996.
- 11. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 12. С. 17. https://doi.org/10.1134/S1990793120060160
- 12. Nicoli C., Haldenwang P., Denet B. // Combust. Sci. Technol. 2019. V. 191. Issue 2. P. 197. https://doi.org/10.1080/00102202.2018.1453728.
- 13. Nicoli C., Haldenwang P., Denet B. // Combust. Theor. Model. 2017. V. 21. Issue 4. P. 630. https://doi.org/10.1080/13647830.2017.1279756
- 14. Matalon M. // Annu. Rev. Fluid Mech. 2007. V. 39. Issue 1. P. 163. https://doi.org/10.1146/annurev.fluid.38.050304. 092153.
- 15. Yakovenko I.S., Kiverin A.D. // Intern. J. Hydrogen Energy. 2021. V. 46. Issue 1. P. 1259. https://doi.org/10.1016/j.ijhydene.2020.09.234
- 16. Яковенко И.С., Медведков И.С., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 3. С. 85. https://doi.org/10.1134/S1990793122020142
- 17. Sheppard D.T. Spray Characteristics of Fire Sprinklers, NIST GCR 02-838. Gaithersburg, MD, USA: National Institute of Standards and Technology, 2002.
- 18. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 8. С. 66. https://doi.org/10.1134/S1990793122040297
- 19. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. 1978. V. 83. Issue 3. P. 297. https://doi.org/10.6028/jres.083.019
- 20. McGrattan K., McDermott R., Hostikka S. et al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1. Gaithersburg, MD, USA: U.S. Department of Commerce, National Institute of Standards and Technology, 2019. https://doi.org/10.6028/NIST.SP.1018
- 21. Crowe C.T., Schwarzkopf J.D., Sommerfeld M., Tsuji Y. Multiphase flows with droplets and particles. 2nd ed. Boca Raton: CRC Press, 2012.
- 22. Cheremisinoff N.P. Gas-liquid flows. Encyclopedia of fluid mechanics. 1st ed., vol. 3. Houston: Gulf Publishing, 1986.
- 23. Keromnes A., Metcalfe W.K., Heufer K.A. et.al. // Combust. and Flame. 2013. V. 160. Issue 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
- 24. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
- 25. Тереза А. М., Агафонов Г. Л., Андержанов Э. К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68. https://doi.org/10.1134/S1990793123040309
- 26. Тереза А. М., Агафонов Г. Л., Андержанов Э. К. и др. // Хим. физика. 2023. Т. 42. № 3. С. 70. https://doi.org/10.1134/S1990793123020173
- 27. Fursenko R.V., Pan K.L., Minaev S.S. // Phys. Rev. E. 2008. V 78. 056301. https://doi.org/10.1103/PhysRevE.78.056301
- 28. Creta F., Fogla N., Matalon M. // Combust. Theor. Model. 2011. V. 15. Issue 2. P. 267. https://doi.org/10.1080/13647830.2010.538722