RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Influence of water microdroplets on hydrogen–air flame instability development in a channel

PII
10.31857/S0207401X24080111-1
DOI
10.31857/S0207401X24080111
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 8
Pages
101-108
Abstract
The paper is devoted to the numerical analysis of the gaseous combustion process in a channel willed with the hydrogen-air mixture with the inflow of a fresh mixture seeded with microdroplets of water. The dynamics of microdroplets are described in the Lagrangian approximation, which makes it possible to identify the role of local interaction between the droplets and the flame front. It has been shown that the impact of droplets on the front can provoke the generation of disturbances of the flame front and intensify the development of front instability, thereby causing an integral increase in the combustion rate. Using spectral analysis of the structure of the front in the presence of microdroplets, the dynamics of the development of individual harmonics of front disturbances was analyzed and the mechanisms of evolution of the flame front under the influence of microdroplets of water were identified.
Keywords
горение газовзвесей микрокапли воды неустойчивость горения водород численное моделирование
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Thomas G.O., Jones A., Edwards M.J. // Combust. Sci. Technol. 1991. V. 80. Issue 1–3. P. 47. https://doi.org/10.1080/00102209108951776
  2. 2. Thomas G.O., Edwards M.J., Edwards D.H. // Combust. Sci. Technol. 1990. V. 71. Issue 4–6. P. 233. https://doi.org/10.1080/00102209008951634
  3. 3. van Wingerden K., Wilkins B., Bakken J., Pedersen G. // J. Loss. Prev. Process. Ind. 1995. V. 8. Issue 2. P. 61. https://doi.org/10.1016/0950-4230 (95)00007-N
  4. 4. Boeck L., Kink A., Oezdin D., Hasslberger J., Sattelmayer T. // Intern. J. Hydrogen Energy. 2015. V. 40. Issue 21. P. 6995. https://doi.org/10.1016/j.ijhydene.2015.03.129
  5. 5. Tsai S.S., Liparulo N.J. Fog inerting criteria for hydrogen/air mixtures, Tech. Rep. CONF-821026e. Palo Alto, CA, USA: Electric Power Research Inst. 1982.
  6. 6. Медведев С.П., Гельфанд Б.Е., Поленов А.Н., Хомик С.В. // Физика горения и взрыва. 2002. Т. 38. № 4. С. 381. https://doi.org/10.1023/A:1016277028276
  7. 7. Gieras M. // J. Loss. Prev. Process. Ind. 2008. V. 21. Issue 4. P. 472. https://doi.org/10.1016/j.jlp.2008.03.004
  8. 8. Zhang P., Zhou Y., Cao X., Gao X., Bi M. // J. Loss. Prev. Process. Ind. 2014. V. 29. Issue 1. P. 313. https://doi.org/10.1016/j.jlp.2014.03.014
  9. 9. van Wingerden K., Wilkins B. // J. Loss. Prev. Process. Ind. 1995. V. 8. Issue 2. P. 53. https://doi.org/10.1016/0950-4230 (95)00002-I
  10. 10. Thomas G.O., Brenton J.R. An investigation of factors of relevance during explosion suppression by water sprays. Tech. Rep. OTH 94 463. London, UK: The University College of Wales, 1996.
  11. 11. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 12. С. 17. https://doi.org/10.1134/S1990793120060160
  12. 12. Nicoli C., Haldenwang P., Denet B. // Combust. Sci. Technol. 2019. V. 191. Issue 2. P. 197. https://doi.org/10.1080/00102202.2018.1453728.
  13. 13. Nicoli C., Haldenwang P., Denet B. // Combust. Theor. Model. 2017. V. 21. Issue 4. P. 630. https://doi.org/10.1080/13647830.2017.1279756
  14. 14. Matalon M. // Annu. Rev. Fluid Mech. 2007. V. 39. Issue 1. P. 163. https://doi.org/10.1146/annurev.fluid.38.050304. 092153.
  15. 15. Yakovenko I.S., Kiverin A.D. // Intern. J. Hydrogen Energy. 2021. V. 46. Issue 1. P. 1259. https://doi.org/10.1016/j.ijhydene.2020.09.234
  16. 16. Яковенко И.С., Медведков И.С., Киверин А.Д. // Хим. физика. 2022. Т. 41. № 3. С. 85. https://doi.org/10.1134/S1990793122020142
  17. 17. Sheppard D.T. Spray Characteristics of Fire Sprinklers, NIST GCR 02-838. Gaithersburg, MD, USA: National Institute of Standards and Technology, 2002.
  18. 18. Тереза А.М., Агафонов Г.Л., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 8. С. 66. https://doi.org/10.1134/S1990793122040297
  19. 19. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. 1978. V. 83. Issue 3. P. 297. https://doi.org/10.6028/jres.083.019
  20. 20. McGrattan K., McDermott R., Hostikka S. et al. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1. Gaithersburg, MD, USA: U.S. Department of Commerce, National Institute of Standards and Technology, 2019. https://doi.org/10.6028/NIST.SP.1018
  21. 21. Crowe C.T., Schwarzkopf J.D., Sommerfeld M., Tsuji Y. Multiphase flows with droplets and particles. 2nd ed. Boca Raton: CRC Press, 2012.
  22. 22. Cheremisinoff N.P. Gas-liquid flows. Encyclopedia of fluid mechanics. 1st ed., vol. 3. Houston: Gulf Publishing, 1986.
  23. 23. Keromnes A., Metcalfe W.K., Heufer K.A. et.al. // Combust. and Flame. 2013. V. 160. Issue 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  24. 24. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  25. 25. Тереза А. М., Агафонов Г. Л., Андержанов Э. К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68. https://doi.org/10.1134/S1990793123040309
  26. 26. Тереза А. М., Агафонов Г. Л., Андержанов Э. К. и др. // Хим. физика. 2023. Т. 42. № 3. С. 70. https://doi.org/10.1134/S1990793123020173
  27. 27. Fursenko R.V., Pan K.L., Minaev S.S. // Phys. Rev. E. 2008. V 78. 056301. https://doi.org/10.1103/PhysRevE.78.056301
  28. 28. Creta F., Fogla N., Matalon M. // Combust. Theor. Model. 2011. V. 15. Issue 2. P. 267. https://doi.org/10.1080/13647830.2010.538722
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library