- PII
- 10.31857/S0207401X24100048-1
- DOI
- 10.31857/S0207401X24100048
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 10
- Pages
- 49-60
- Abstract
- The problem of heterogeneous recombination of nitrogen and oxygen atoms is considered. An analysis of the processes influencing the results of measurements of the recombination probability was carried out. The work presents the authors’ data on heterogeneous recombination of atoms in the temperature range of 300–3000 K and pressures of 0.01–50 hPa (mbar). The probabilities of heterogeneous recombination of O and N atoms on the surface of quartz were measured using the method of resonance fluorescence spectroscopy (RFS) under strictly controlled conditions at temperatures of 300–1000 K and pressures of 0.01–10 hPa in IBHF reactors. The pressure and temperature regions where recombination occurs predominantly according to the Langmuir-Hinshelwood or Rydil-Ely scheme have been determined. In experiments at the VAT-104 TsAGI installation in the temperature range of 1000–3000 K and pressures of 5–50 hPa, the effective values of the rate constant of joint heterogeneous recombination Kw of nitrogen and oxygen atoms were determined using measurements of specific heat flows. Coatings with a surface layer similar in composition to quartz and a number of high-temperature ceramics based on hafnium (zirconium) borides were studied. Studies of ceramics have shown that heterogeneous recombination also occurs at temperatures of 2500–3000 K. A new mechanism of heterogeneous recombination of nitrogen and oxygen atoms is considered. Under the influence of a high-speed plasma flow, the ceramics are oxidized and a layer of hafnium (zirconium) oxide polycrystals is formed. The observed jump in temperature by ≈1000 K and heat flux up to 4–5 times is caused by the catalytic activity of the tetragonal and cubic phases of HfO2 (ZrO2) polycrystals. The high catalytic activity of the oxide layer is apparently explained by a new recombination mechanism associated with the incorporation of nitrogen and oxygen atoms into the crystal lattice (formation of a solid solution).
- Keywords
- гетерогенная рекомбинация атомов резонансно-флуоресцентная спектроскопия кварцевый реактор вероятность рекомбинации центр катализа константа скорости Kw встраивание атомов кристаллическая решетка твердый раствор
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Крылов О.В. Гетерогенный катализ. М.: ИКЦ “Академкнига”, 2004.
- 2. Ковалев В.Л. Гетерогенные каталитические процессы в аэротермодинамике. М.: Физматлит, 2002.
- 3. Александров Е.Н., Жестков Б.Е., Козлов С.Н. // Теплофизика высоких температур. 2014. Т. 52. № 1. С. 41; https://doi.org/10.7868/S0040364413060021
- 4. Жестков Б.Е., Козлов С.Н., Александров Е.Н. // Теплофизика высоких температур. 2019. Т. 57. № 3. С. 361; https://doi.org/10.1134/S0040364419030219
- 5. Козлов С.Н., Жестков Б.Е. // Хим. физика. 2022. Т. 41. № 11. С. 1; https://doi.org/10.31857/S0207401X22110061
- 6. Холодкова Н.В., Холодков И.В. // Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 2. С. 3.
- 7. Александров Е.Н., Егоров И.В., Жестков Б.Е, Козлов С.Н.,. Русаков С.В. // Сб. “Результаты фундаментальных исследований в прикладных задачах авиастроения”. М.: “Наука”, 2016. С. 150.
- 8. Жестков Б.Е., Штапов В.В. // Завод. лаб. 2016. Т. 82. № 12. С. 58.
- 9. Жестков Б.Е., Терентьева В.С. // Металлы. 2010. № 1. С. 39.
- 10. Astapov A.N., Zhestkov B.E., Lifanov I.P., Terentieva V.S. // International Conf. on High-Speed Vehicle Science & Technology. Moskow: TsAGI, 2018. Report 2990962 pdf.
- 11. Astapov A.N., Zhestkov B.E., Pogozhev Yu.S., et al. // Corrosion Sci. 2021. V. 189. P. 1. https://doi.org/10.1016/j.corsci.2021.109587
- 12. Astapov A.N., Zhestkov B.E., Lifanov I.P. et al. // Arabian J. Sci. Engin. 2019. V. 53. № 6. P. 762.
- 13. Vaganov A.V., Zhestkov B.E., Lyamin Yu.B., Poilov V.Z., Pryamilova E.N. // AIP Conf. Proc. N.Y.: AIP Publishing, 2016. 1770, 030097. doi:10.1063/1.4964039
- 14. Каблов Е.Н., Жестков Б.Е., Гращенков Д.В. и др. // Теплофизика высоких температур. 2017. Т. 55. № 6. С. 704. https://doi.org/10.7868/S0040364417060059
- 15. Жестков Б.Е., Ваганова М.Л., Лебедева Ю.Е., Сорокин О.Ю., Медведев П.Н. // Теплофизика высоких температур 2018. Т. 56. № 3. С. 395. https://doi.org/10.7868/S0040364418030109
- 16. Vaganov A.V., Zhestkov B.E., Sakharov I.V., Senyuev I.V. et al. // Proc. Intern. Conf. on High-Speed Vehicle Science & Technology. Moskow: TsAGI, 2018. Report 38601093.pdf
- 17. Sakharov V.I., Senyuev I. V., Zhestkov B.E. // Phys.-Chem. Kinet. Gas Dynamics. 2019. V. 20. № 2. P. 1; https://doi.org/10.33257/PhChGD.20.2.819.
- 18. Козлов С.Н., Александров Е.Н., Жестков Б.Е., Кислюк М.У. // Изв. АН СССР. Сер. хим. 1987. № 11. С. 2449.
- 19. Жестков Б.Е. // Уч. зап. ЦАГИ. 2014. Т. XLV. № 5. С. 62.
- 20. Мошаров В.Е., Радченко В.Н., Сенюев И.В. // ПТЭ. 2013. № 4. С. 132.
- 21. Сенюев И.В. // Уч. зап. ЦАГИ. 2017. Т. XLVIII. № 2. С. 5.
- 22. Жестков Б.Е. Сенюев И.В., Похвалинский С.М., Штапов В.В. Способ определения теплового потока. Патент RU 2752396 // Б.И. 2021. № 21.
- 23. Башкин В.А., Егоров И.В., Жестков Б.Е., Шведченко В.В. // Теплофизика высоких температур. 2008. Т. 46. № 5. С. 771.
- 24. Егоров И.В., Жестков Б.Е., Шведченко В.В. // Уч. зап. ЦАГИ. 2014. Т. XLV. № 1. С. 3.
- 25. Ваганов А.В., Жестков Б.Е., Сенюев И.В. Способ определения каталитической активности материалов и покрытий. Патент RU 2792255 // Б. И. 2023. № 9.
- 26. Кузнецов Н.М, Козлов С.Н. // Хим. физика. 2019. Т. 38. № 5. С. 29; doi: 10.1134/S1990793119030072
- 27. Козлов С.Н. // Хим. физика. 2020. Т. 39. № 8. С. 40; https://doi.org/10.31857/S0207401X20080075.
- 28. Козлов С.Н., Тереза А.М., Медведев С.П. // Хим. физика. 2021. Т. 40. № 8. С. 34. https://doi.org/10.31857/S0207401X21080070