- PII
- 10.31857/S0207401X24100069-1
- DOI
- 10.31857/S0207401X24100069
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 10
- Pages
- 71-80
- Abstract
- There are many reasons for natural gas (methane) leaks in gas distribution networks. One of the most important tasks of gas distribution organizations is to promptly identify and eliminate gas leaks before they cause emergency situations. Eliminating gas leaks as soon as possible will minimize the negative impact on the environment. This paper proposes a new original method for detecting emergency gas emissions into the atmosphere and leaks on gas pipeline systems. The technique involves the simultaneous use of both experimental and calculated data to determine the concentration and characteristic sizes of gas emissions. The methodology was tested at laboratory conditions using a propane cylinder and a gas burner. The Scorpion monophotonic sensor was used as recording equipment. As a result of processing experimental data and mathematical modeling using computational fluid dynamics methods, the dependence of propane concentration on the distance to the burner was constructed and the characteristic dimensions of the gas cloud were determined.There are many reasons for natural gas (methane) leaks in gas distribution networks. One of the most important tasks of gas distribution organizations is to promptly identify and eliminate gas leaks before they cause emergency situations. Eliminating gas leaks as soon as possible will minimize the negative impact on the environment. This paper proposes a new original method for detecting emergency gas emissions into the atmosphere and leaks on gas pipeline systems. The technique involves the simultaneous use of both experimental and calculated data to determine the concentration and characteristic sizes of gas emissions. The methodology was tested at laboratory conditions using a propane cylinder and a gas burner. The Scorpion monophotonic sensor was used as recording equipment. As a result of processing experimental data and mathematical modeling using computational fluid dynamics methods, the dependence of propane concentration on the distance to the burner was constructed and the characteristic dimensions of the gas cloud were determined.
- Keywords
- атмосфера аварийные выбросы газа утечка на газопроводе гиперспектрометр монофотонный датчик время задержки воспламенения вычислительная газовая динамика
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Van der Werff H.M.A., Noomen M.F., van der Meijde M. et al. // New Developments and Challenges in Remote Sensing / Ed. Bochenek. Z. /Rotterdam: Millpress, 2007. P. 707.
- 2. Sabbah S., Rusch P., Gerhard J.H. et al. // Electro-Optical Remote Sensing, Photonic Technologies, and Applications V / Eds. Kamerman G.W., Steinvall O., Bishop G.J., et al. Proc. SPIE. 2011. V. 8186. 81860S; https://doi.org/10.1117/12.899687
- 3. Ma P., Mondal T.G., Shi Z. et al. // Environ. Sci. Technol. 2024. V. 58. P. 12018; https://doi.org/10.1021/acs.est.4c03345
- 4. Gagnon M.A., Tremblay P., Savary S. et al. // Advanced Environmental, Chemical, and Biological Sensing Technologies XI / Eds. Vo-Dinh T., Lieberman R.A., Gauglitz G.G. . Proc. SPIE. 2014. V. 9106. 91060C; https://doi.org/10.1117/12.2050588
- 5. Tratt D.M., Buckland K.N., Keim E.R. et al. // Proc. 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Los Angeles: IEEE, 2016. P. 1; https://doi.org/10.1109/WHISPERS.2016.8071711
- 6. Xavier W., Labat N., Audouin G. et al. // Abu Dhabi International Petroleum Exhibition & Conference (16ADIP). Abu Dhabi: SPE, 2016. SPE-183527-MS; https://doi.org/10.2118/183527-MS
- 7. Scafutto R.P.M., De Souza Filho C.R. // Remote Sens. 2018. V. 10. № 8. 1237; https://doi.org/10.3390/rs10081237
- 8. Xiao C., Fu B., Shui H. et al. // Remote Sens. 2020. V. 12. № 3. 537; https://doi.org/10.3390/rs12030537
- 9. Рубцов Н.М., Виноградов А.Н., Калинин А.П. и др. // Хим. физика. 2019. Т. 38. № 4. С. 53; https://doi.org/10.1134/S0207401X19040101
- 10. Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
- 11. Rubtsov N., Alymov M., Kalinin A. et al. Remote studies of combustion and explosion processes based on optoelectronic methods. Melbourne: AUS PUBLISHERS, 2022; https://doi.org/10.26526/monography_62876066a124d8.04785158
- 12. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980.
- 13. ANSYS Fluent Theory Guide. Canonsburg: SAS Inc., 2013.
- 14. Star-CCM+. https://star-ccm.com/
- 15. Введение в COMSOL Multiphysics; https://www.comsol.com/
- 16. Flow Vision; https://flowvisioncfd.com/en/
- 17. SALOME version 9.12.0; https://www.salome-platform.org/?p=2657
- 18. Schwarz J., Axelsson K., Anheuer D. et al. // SoftwareX. 2023. V. 22. 101378; https://doi.org/10.1016/j.softx.2023.101378
- 19. Белов И.А., Исаев С.А. Моделирование турбулентных течений. Санкт-Петербург: Изд-во Балтийского ГТУ, 2001.
- 20. Wilcox D.C. Turbulence modelling for CFD. San Diego: Birmingham Press, 2006.
- 21. Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. М.: Физматлит, 2008.
- 22. Leachman J.W., Jacobsen R.T., Lemmon E.W. et al. Thermodynamic properties of cryogenic fluids / Eds. Van Sciver S.W., Jeong S.. Cham: Springer International Publishing, 2017; https://doi.org/10.1007/978-3-319-57835-4
- 23. Span R. Multiparameter equations of state. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000; https://doi.org/10.1007/978-3-662-04092-8
- 24. Lemmon E.W., Bell I.H., Huber M.L. et al. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) Ver. 10.0. Gaithersburg: National Institute of Standards and Technology, 2018.
- 25. Гольдштик М.А., Штерн В.Н. Гидродинамическая устойчивость и турбулентность. Новосибирск: Наука, 1977.
- 26. Schlichting H., Gersten K. Boundary-layer theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017; https://doi.org/10.1007/978-3-662-52919-5
- 27. Приказ Ростехнадзора от 28.11.2022 № 415 “Об утверждении Руководства по безопасности “Методика оценки последствий аварий на взрывопожароопасных химических производствах”. 2022; https://set.rk.gov.ru/uploads/txteditor/set/attachments/d4/1d/8c/d98f00b204e9800998ecf8427e/phpIW8esL_1.pdf
- 28. Руководство по безопасности “Методика моделирования распространения аварийных выбросов опасных веществ”. М.: ЗАО НТЦ ПБ, 2015.
- 29. FLACS-CFD Release 24.1; https://www.gexcon.com/software/flacs-cfd/
- 30. Монин А.С., Обухов А.М. // Тр. Геофиз. Инст-та АН СССР. 1954. Т. 24. № 151. С. 163.
- 31. Tiab D., Donaldson E.C. Petrophysics: theory and practice of measuring of reservoir rock and fluid transport properties. Oxford: Gulf Professional Publishing, 2004.
- 32. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М.: Недра, 1993.
- 33. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. М.–Ижевск: Институт компьютерных исследований, 2005.
- 34. Yuhu D., Huilin G., Jingen Z. et al. // Chem. Eng. J. 2003. V. 92. № 1–3. P. 237; https://doi.org/10.1016/S1385-8947 (02)00259-0
- 35. Белов А.А., Калинин А.П., Крысюк И.В. и др. // Датчики и системы. 2010. № 1. С. 47.
- 36. Калинин А.П., Егоров В.В., Родионов А.И. и др. // Хим. физика. 2023. Т. 42. № 7. С. 17; https://doi.org/10.31857/S0207401X23070087
- 37. Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2023. Т. 42. № 10. C. 96; https://doi.org/10.31857/S0207401X23100138
- 38. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2022. Т. 41. № 9. С. 26; https://doi.org/10.31857/S0207401X22090047
- 39. Голяк Ил.С., Анфимов Д.Р., Винтайкин И.Б. и др. // Хим. физика. 2023. Т. 42. № 4. C. 3; https://doi.org/10.31857/S0207401X23040088
- 40. Морозов А.Н., Табалин С.Е., Анфимов Д.Р. и др. // Хим. физика. 2024. Т. 43. № 6.