RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Stimulated detonation of a high-energy heterogeneous plasma formation created by capillary erosive plasma generator and magneto- plasma compressor

PII
10.31857/S0207401X24100074-1
DOI
10.31857/S0207401X24100074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 10
Pages
81-88
Abstract
Studying the physical properties of long-lived plasma formations can help us to understanding the nature of electro-physical phenomena in thunder clouds, the lower ionosphere, tornadoes, volcanic activity and the associated appearance of natural plasmoids (such as ball lightning, sprites, jets, etc.). The study of the stimulated detonation of long-lived energy-consuming plasmoids obtained in laboratory using a combined type plasma generator consisting of an erosive plasma generator and a magnetoplasma compressor is presented in this paper. It was found that a necessary condition for detonation is the excess of certain threshold values of pressure and temperature. The existence of a directed explosion mode has been established, which is realized only at optimal delay times (of the order of td ~ 2000 μs) between the beginning of a pulsed erosion discharge and the discharge of a magnetoplasma compressor. The parameters of shock waves, as well as the optical and X-ray spectra of long-lived energy-consuming plasmoids in the stimulated detonation mode were measured.
Keywords
плазма магнитоплазменный компрессор эрозионный разряд детонация ударная волна
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Mashek I.C., Lashkov V.A., Kolesnichenko Y.F, Brovkin V.G. // AIAA 2011-1274; https://doi.org/10.2514/6.2011-1274
  2. 2. Klimov A.I., Belov N.K., Brovkin V.G., Pashchina A.S. // J. Phys. Conf. Ser. 2021. V. 2100. P. 012006; https://doi.org/10.1088/1742-6596/2100/1/012006
  3. 3. Физика и применение плазменных ускорителей /Под ред. Морозова А.И., Минск: Наука и техника, 1974. С. 103.
  4. 4. Rout R.K., Mishra P., Rawool A.M. et al. // J. Phys. D.: Appl. Phys. 2008. V. 41. № 20. P. 205211. https://doi.org/10.1088/0022-3727/41/20/205211
  5. 5. Shumlak U. // J. Appl. Phys. 2020. V. 127. № 20. P. 200901; https://doi.org/10.1063/5.0004228
  6. 6. Soto L., Pavéz C., Moreno J. et al. // Phys. Plasma. 2017. V. 24. № 8. P. 082703; https://doi.org/10.1063/1.4989845
  7. 7. Verma R., Rawat R.S., Lee P. et al. // Plasma Phys. Controlled Fusion. 2009. V. 51. № 7. P. 075008; https://doi.org/10.1088/0741-3335/51/7/075008
  8. 8. Pashchina A.S., Efimov A.V., Chinnov V.F. // High Temp. 2017. V. 55. № 5. P. 650; https://doi.org/10.1134/S0018151X17040174
  9. 9. Пащина А.С., Климов А.И. // Хим. физика. 2014. Т. 33. № 2. С. 78; https://doi.org/10.7868/S0207401X14020083
  10. 10. Авраменко Р.Ф., Бахтин Б.И., Николаева В.И. и др. // ЖТФ. 1990. Т. 60. № 12. С. 57.
  11. 11. Климов А.И. // Хим. физика. 2006. Т. 25. № 3. С. 104.
  12. 12. Емелин С.Е., Пирозерский А.Л. // Хим. физика. 2006. Т. 25. № 3. С. 7.
  13. 13. Шаровая молния в лаборатории. Сб. статей. М.: Химия, 1994.
  14. 14. Klimov A.I., Belov N.K., Tolkunov B.N. // J. Phys. Conf. Ser. 2020. V. 1698. P. 012034; https://doi.org/10.1088/1742-6596/1698/1/012034
  15. 15. Наливкин Д.В. Ураганы, бури и смерчи. Л.: Наука, 1969.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library