ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Образование нитратов в частицах атмосферной дымки

Код статьи
10.31857/S0207401X24100089-1
DOI
10.31857/S0207401X24100089
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 43 / Номер выпуска 10
Страницы
89-99
Аннотация
В работе рассматриваются данные мониторинга в зимнее время ионного состава аэрозольных частиц и малых газовых составляющих в приземной атмосфере Антверпена и Пекина. По результатам их сравнения показано, что быстрое накопление NO3- над Пекином в частицах дымки происходит в результате жидкофазной каталитической реакции образования сульфатов с участием ионов Mn/Fe, протекающей в быстром вырожденно-разветвленном режиме. Цикл этих превращений сопровождается в частицах попутной наработкой нитратных радикалов. Их выход в газовую фазу приводит к увеличению концентрации молекул N2O5 и быстрому накоплению нитратов. Сопряжение процессов каталитической (не фотохимической) конверсии диоксида серы в сульфаты и наработки нитратов над Пекином играет, таким образом, решающую роль в формировании минерального состава частиц дымки в атмосфере.
Ключевые слова
аэрозольная дымка нитраты и сульфаты катализ вырождено-разветвленный режим ионы переходных металлов
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. Issue 7046. P. 1187; https://doi.org/10.1038/nature03671
  2. 2. Seinfeld J. H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016.
  3. 3. Зеленов В.В., Апарина Е.В. // Хим. физика. 2022. Т. 41. № 12. С. 81; https://doi.org/10.31857/S0207401X22120111
  4. 4. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023.Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
  5. 5. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81; https://doi.org/10.31857/S0207401X23040064
  6. 6. ЛаринИ.К., Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 6. С. 64; https://doi.org/10.31857/S0207401X24060074
  7. 7. Clark C.M., Tilman D. //Nature. 2008. V. 451. Issue 7179. P. 712, https://doi.org/10.1038/nature06503
  8. 8. Zhang Q., Jiang X., Tong D., et al. //Nature. 2017. V. 543. Issue 7647. P.705. https://doi.org/10.1038/nature21712
  9. 9. Wang G.H., Zhang R.Y., Gomes M.E. et al.// Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. Issue 48. P. 13630; https://doi.org/10.5194/acp-23-3015-2023
  10. 10. Liu P., Ye C., Xue Ch. et al. // Atmos. Chem. Phys. 2020. V. 20 № 7. P. 4153; https://doi.org/10.5194/acp-20-4153-2020
  11. 11. Zheng G.J., Duan F.K., Su H. et al. // Atmos. Chem. Phys. 2015. V. 15. № 6. P. 2969; https://doi.org/10.5194/acp-15-2969-2015
  12. 12. Pan Y., WangY., Zhang J. et al. // Atmos. Environ. 2016. V. 141. P. 197; https://doi.org/10.1016/j.atmosenv.2016.06.035
  13. 13. Fan M-Y., Zhang Y-L., Lin Y-Ch. et al. // Ibid. 2019. V. 212. P.96; https://doi.org/10.1016/j.atmosenv.2019.05.020
  14. 14. Wang H., Lu K., Chen X., et al. // Environ. Sci. Technol. Lett. 2017. V. 4. № 10. P. 416; https://doi.org/10.1021/acs.estlett.7b00341
  15. 15. Wang H. The chemistry of nitrate radical (NO3) and denitrogen pentoxide (N2O5) in Beijing. Springer Theses. Springer Nature Singapore Pte Ltd. 2021.
  16. 16. Sun Y., Jiang Q.,Wang Z. et al. // J. Geophys. Res. 2014. V. 119. № 7. P. 4380; https://doi.org/10.1002/2014JD021641
  17. 17. Zheng G.J., Duan F.K., Su H. et al. // Atmos. Chem. Phys. 2015. V.15. P. 2969; https://doi.org/10.5194/acp-15-2969-2015
  18. 18. Sander S. P., Friedl R.R., Golden D.M. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15. JPL Publication 06-2. Jet Propulsion Laboratory. Pasadena. CA, 2006.
  19. 19. Ермаков А.Н., Алоян А.Е., Арутюнян В.О., Прончев Г.Б. // Оптика атмосферы и океана. 2023. Т. 36. № 12. С. 975; https://doi.org/10.15372/AOO20231203
  20. 20. Yermakov A.N. // Kinet. Catal. 2023. V. 64. № 1. P. 74; https://doi.org/10.1134/S0023158423010019
  21. 21. Grieken R.V. Optimization and environmental application of TW-EPMA for single particle analysis., Antwerpen: Antwerpen University 2005.
  22. 22. Liu M., Song Y., Zhou T., et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213; https://doi.org/10.1002/2017GL073210
  23. 23. Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations. Ed. Calvert, J.G. Butterworth, Boston, 1984. P. 173.
  24. 24. Jacobsen M. Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atm.1996. V. 101. Issue D4. P. 9079; https://doi.org/10.1029/96JD00348
  25. 25. Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. U.S.A. 2020.V. 117. № 3. P. 1354; https://doi.org/10.1073/pnas.1916401117
  26. 26. Cheng Y., Zheng G., Wei C. et al. // Sci. Adv. 2016. V. 2. Issue 12. e1601530; https://doi.org/10.1126/sciadv.1601530
  27. 27. Herrmann H., Ervens B., Jacobi H.-W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231; https://doi.org/10.1023/A:1006318622743
  28. 28. Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V.7. № 8. P.1961; https://doi.org/10.5194/acp-7-1961-2007
  29. 29. Fountoukis C., Nenes A. // Ibid. 2007. V. 7. Issue 17. P. 4639; https://doi.org/10.5194/acp-7-4639-2007
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека