- PII
- 10.31857/S0207401X24100089-1
- DOI
- 10.31857/S0207401X24100089
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 10
- Pages
- 89-99
- Abstract
- The paper considers data on winter monitoring of the ionic composition of aerosol particles and small gas components in the surface atmosphere of Antwerp and Beijing. According to the results of their comparison, it is shown that the rapid accumulation of NO3- over Beijing in haze particles is triggered by a liquid-phase catalytic reaction of sulfate formation involving Mn/Fe ions, which proceeds in a fast degenerate branched mode. The cycle of these transformations is accompanied by the associated production of nitrate radicals in the particles. Their release into the gas phase leads to an increase in the concentration of N2O5 molecules, and a rapid accumulation of nitrates. The coupling of the catalytic (petrochemical) conversion of sulfur dioxide into sulfates and the nitrate production process over Beijing thus plays a crucial role in the formation of the mineral composition of haze particles in the atmosphere.
- Keywords
- аэрозольная дымка нитраты и сульфаты катализ вырождено-разветвленный режим ионы переходных металлов
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. Issue 7046. P. 1187; https://doi.org/10.1038/nature03671
- 2. Seinfeld J. H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, New Jersey, USA: John Wiley & Sons, 2016.
- 3. Зеленов В.В., Апарина Е.В. // Хим. физика. 2022. Т. 41. № 12. С. 81; https://doi.org/10.31857/S0207401X22120111
- 4. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023.Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
- 5. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81; https://doi.org/10.31857/S0207401X23040064
- 6. ЛаринИ.К., Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 6. С. 64; https://doi.org/10.31857/S0207401X24060074
- 7. Clark C.M., Tilman D. //Nature. 2008. V. 451. Issue 7179. P. 712, https://doi.org/10.1038/nature06503
- 8. Zhang Q., Jiang X., Tong D., et al. //Nature. 2017. V. 543. Issue 7647. P.705. https://doi.org/10.1038/nature21712
- 9. Wang G.H., Zhang R.Y., Gomes M.E. et al.// Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. Issue 48. P. 13630; https://doi.org/10.5194/acp-23-3015-2023
- 10. Liu P., Ye C., Xue Ch. et al. // Atmos. Chem. Phys. 2020. V. 20 № 7. P. 4153; https://doi.org/10.5194/acp-20-4153-2020
- 11. Zheng G.J., Duan F.K., Su H. et al. // Atmos. Chem. Phys. 2015. V. 15. № 6. P. 2969; https://doi.org/10.5194/acp-15-2969-2015
- 12. Pan Y., WangY., Zhang J. et al. // Atmos. Environ. 2016. V. 141. P. 197; https://doi.org/10.1016/j.atmosenv.2016.06.035
- 13. Fan M-Y., Zhang Y-L., Lin Y-Ch. et al. // Ibid. 2019. V. 212. P.96; https://doi.org/10.1016/j.atmosenv.2019.05.020
- 14. Wang H., Lu K., Chen X., et al. // Environ. Sci. Technol. Lett. 2017. V. 4. № 10. P. 416; https://doi.org/10.1021/acs.estlett.7b00341
- 15. Wang H. The chemistry of nitrate radical (NO3) and denitrogen pentoxide (N2O5) in Beijing. Springer Theses. Springer Nature Singapore Pte Ltd. 2021.
- 16. Sun Y., Jiang Q.,Wang Z. et al. // J. Geophys. Res. 2014. V. 119. № 7. P. 4380; https://doi.org/10.1002/2014JD021641
- 17. Zheng G.J., Duan F.K., Su H. et al. // Atmos. Chem. Phys. 2015. V.15. P. 2969; https://doi.org/10.5194/acp-15-2969-2015
- 18. Sander S. P., Friedl R.R., Golden D.M. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15. JPL Publication 06-2. Jet Propulsion Laboratory. Pasadena. CA, 2006.
- 19. Ермаков А.Н., Алоян А.Е., Арутюнян В.О., Прончев Г.Б. // Оптика атмосферы и океана. 2023. Т. 36. № 12. С. 975; https://doi.org/10.15372/AOO20231203
- 20. Yermakov A.N. // Kinet. Catal. 2023. V. 64. № 1. P. 74; https://doi.org/10.1134/S0023158423010019
- 21. Grieken R.V. Optimization and environmental application of TW-EPMA for single particle analysis., Antwerpen: Antwerpen University 2005.
- 22. Liu M., Song Y., Zhou T., et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213; https://doi.org/10.1002/2017GL073210
- 23. Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations. Ed. Calvert, J.G. Butterworth, Boston, 1984. P. 173.
- 24. Jacobsen M. Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atm.1996. V. 101. Issue D4. P. 9079; https://doi.org/10.1029/96JD00348
- 25. Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. U.S.A. 2020.V. 117. № 3. P. 1354; https://doi.org/10.1073/pnas.1916401117
- 26. Cheng Y., Zheng G., Wei C. et al. // Sci. Adv. 2016. V. 2. Issue 12. e1601530; https://doi.org/10.1126/sciadv.1601530
- 27. Herrmann H., Ervens B., Jacobi H.-W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231; https://doi.org/10.1023/A:1006318622743
- 28. Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V.7. № 8. P.1961; https://doi.org/10.5194/acp-7-1961-2007
- 29. Fountoukis C., Nenes A. // Ibid. 2007. V. 7. Issue 17. P. 4639; https://doi.org/10.5194/acp-7-4639-2007