ОХНМХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Кинетика окисления соевого лецитина при высоких концентрациях. Действие антиоксидантов

Код статьи
10.31857/S0207401X24110025-1
DOI
10.31857/S0207401X24110025
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 43 / Номер выпуска 11
Страницы
10-17
Аннотация
Изучено инициированное азобисизобутиронитрилом (АИБН) окисление соевого лецитина (RH) в широком диапазоне концентраций RH (0.027−0.4 моль/л) и АИБН (0.01–0.043 моль/л). Установлено, что при высоких концентрациях лецитина в несколько раз снижается параметр окисляемости а = kp /(2kt)0.5, где kp и kt − константы скорости продолжения и обрыва цепей, при этом независимо от концентрации лецитина сохраняется линейная зависимость от скорости инициирования (Wi)0.5. Проведена оценка антирадикальной активности антиоксидантов (АО) разных классов при [RH] = 0.4 моль/л, показавшая, что антирадикальная активность фенолов в лецитине значительно ниже, чем в углеводородах. Антирадикальная активность и эффекты торможения при окислении лецитина уменьшаются в следующем ряду: α-токоферол > 3,6-ди-трет-бутил-1,2-бензохинон > > кверцетин > 2,4,6-три-трет-бутилфенол.
Ключевые слова
соевый лецитин окисление антиоксиданты кверцетин α-токоферол 2,4,6-три-трет-бутилфенол 3,6-ди-трет-бутил-1,2-бензохинон
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Cevc G. Phospholipids Handbook. New York: Marvel Dekker Inc., 1993.
  2. 2. Gupta R., Muralidhara H.S., Davis H.T. // Langmuir. 2001. V. 17. № 17, P. 5176; http://doi.org/10.1021/la0103721
  3. 3. Barclay L.R.C., MacNeil J. M., VanKessel J.A., et al. // J. Amer. Chem. Sос. 1984. V. 106. P. 6740.
  4. 4. Roschek B.J., Tallman K. A., Rector C.L., et al. // J. Org. Chem. 2006. V. 71. № 9. P. 3527. http://doi.org/10.1021/jo0601462
  5. 5. Xu L., Davis T.A., Porter N.A. // J. Аmer. Chem. Soc. 2009. V. 131. P. 13037; http://doi.org/10.1021/ja9029076
  6. 6. Wu Y., Wang T. // J. Am. Oil Chem. Soc. 80, 319 (2003).
  7. 7. Palacios L.E., Wang T. // J. Amer. Oil Chem. Soc. 2005. V. 82. № 8. Р. 571; http://doi.org/10.1007/s11746-005-1111-4
  8. 8. Войченко О.Н., Шабанова И.А., Герасименко Е.О. и др. // Новые технологии. 2011. № 2. С. 18.
  9. 9. Chaiyasit W., Elias R.J., Mcclements D.J. et al. // Critical Rev. Food Sci. Nutrition. 2007. V. 47. Р. 299; http://doi.org/10.1080/10408390600754248
  10. 10. Kasaikina O.T., Krugovov D.A., Mengele E.A. // Eur. J. Lipid Sci. Technol. 2017. V. 119. 1600286; http://doi.org/10.1002/ejlt.201600286
  11. 11. Evans E.I. // Ind. Engin. Chem. 1935. V. 27. № 3. Р. 329; https://doi.org/10.1021/ie50303a019
  12. 12. King M.F., Boyd L.C., Sheldon B.W. // J. Amer. Oil Chem. Soc. 1992. V. 69. Р. 545; http://doi.org/10.1007/BF02636106
  13. 13. Judde A., Villeneuve P., Rossignol-Castera A., at al. // J. Amer. Oil Chem. Soc. 2003. V. 80. Р. 1209; http://doi.org.10.1007/s11746-003-0844-4
  14. 14. Mazaletskaya L., Sheludchenko N., Shishkina L. // Chem. Chem. Technol. 2012. V. 6. № 1. P. 35; http://doi.org/10.23939/chcht06.01.035
  15. 15. Мазалецкая Л.И., Шелудченко Н.И., Шишкина Л.Н. // Биофизика. 2010. Т. 55. № 1. С. 25.
  16. 16. Мазалецкая Л.И., Шелудченко Н.И., Шишкина Л.Н. // Прикл. биохимия и микробиол. 2010. Т. 46. № 2. С. 148.
  17. 17. Эмануэль Н.М., Заиков Г.Е., Майзус З.К. Роль среды в радикально- цепных реакциях окисления органических соединений. М.: Наука, 1973.
  18. 18. Denisov E.T., Afanas’ev I.B. Oxidation and antioxidantsin in organic chemistry and biology. Taylor & Francis Group, 2005.
  19. 19. Менгеле Е.А., Карташева З.С., Плащина И.Г. и др. // Коллоид. журн. 2008. Т. 70. № 6. С. 805.
  20. 20. Денисов Е.Т., Азатян В.В. Препринт. Ингибирование цепных реакций. Черноголовка: ИПХФ РАН, 1997.
  21. 21. Pedrielli P., Pedulli G. F., Skibsted L. H. // J. Agric. Food Chem. 2001. V. 49. № 6. P. 3034; https://doi.org/10.1021/jf010017g
  22. 22. Рогинский В.А. Фенольные антиоксиданты. М.: Наука, 1988.
  23. 23. Русина И.Ф., Карпухин О.Н., Касаикина О.Т. // Хим. физика. 2013. Т. 32. № 8. С. 49; https://doi.org/10.7868/S0207401X13080098
  24. 24. Русина И.Ф., Вепринцев Т.Л., Васильев Р.Ф. // Хим. физика. 2022. Т. 41. № 2. С. 12; http://doi.org/10.31857/S0207401X22020108
  25. 25. Amorati R., Baschieri A., Cowden A., et al. // Biomimetics. 2017. V. 2. P. 9; https:// doi.org/10.3390/biomimetics2030009
  26. 26. Шишкина Л.Н., Козлов М.В., Константинова Т.В. и др. // Хим. физика. 2023. Т. 42. № 1. С. 28; https://doi.org/10.31857/S0207401X23010107
  27. 27. Шарафутдинова Р.Р., Насибуллин Р.С., Фахретдинова Е.Р. // Хим. физика и мезоскопия. 2008. Т. 10. № 4. С. 510.
  28. 28. Шишкина Л.Н., Козлов М.В., Повх А.Ю. и др. // Хим. физика. 2021. Т. 40. № 9. С. 57; http://doi.org/10.31857/S0207401X21090089
  29. 29. Мазалецкая Л.И., Карпухина Г.В., Майзус З.К. // Нефтехимия. 1979. Т. 19. № 2. С. 214.
  30. 30. Плисс Е.М., Лошадкин Д.В., Гробов А.М., и др. // Хим. физика. 2015. Т. 34. № 1. С. 68; http://doi.org/10.7868/S0207401X15010094
  31. 31. Amorati R., Baschieri A., Morroni G., et al. // Chem. Eur. J. 2016. V. 22. № 23. P. 7924.
  32. 32. Тихонов И.В., Бородин Л.И., Плисс Е.М. // Хим. физика. 2020. Т. 39. № 11. С. 3; http://doi.org/10.31857/S0207401X2011014X
  33. 33. Молодочкина С.В., Лошадкин Д.В., Плисс Е.М. // Хим. физика. 2024. Т. 43. № 1. С. 52.
  34. 34. Kancheva V. D., Kasaikina O. T. // Curr. Med. Chem. 2013. Т. 20. С. 4784; http://doi.org/10.2174/09298673113209990161
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека