RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Cardiac troponin I determination by elisa immuno assay on magnetic particles with electrochemical detection

PII
10.31857/S0207401X24110095-1
DOI
10.31857/S0207401X24110095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 11
Pages
71-78
Abstract
A high sensitive method for the quantitative rapid determination of cardiac Troponin I in human serum has been developed. The method is based on an enzyme-linked immunosorbent assay on magnetic particles in the volume of a blood serum sample, which can significantly reduce the diffusion limits typical for common ELISA. Alkaline phosphatase which is a high-performance enzyme was used as an enzyme label. The enzyme demonstrated a catalytic efficiency (kcat/Km) = 26500 1/(s∙mM) in combination with the substrate 1-naphtyl phosphate monosodium salt. The planar electrochemical sensors manufactured by industrial screen-printing technology were used for signal detection. The detection was carried out in differential pulse voltammetry mode. The calculated limit of detection by the enzymatic reaction product was 0.075 μM which significantly exceeded the sensitivity of colorimetric methods. The combination of the proposed methods and approaches makes it possible to obtain a quantitative analysis for cardiac TnI in human serum within 20 minutes with an estimated detection limit of 7 pg/mL and an upper reference limit of normal analyte concentration (99-th percentile) of 22 pg/mL.
Keywords
иммуноферментный анализ магнитные частицы щелочная фосфатаза электрохимическое детектирование сердечный тропонин I
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Hahla M.S., Saeed Y., Razieh H. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 6. P. 2013–6.
  2. 2. National Center for Health Statistics. Multiple Cause of Death by Single Race 2018-2022 on CDC WONDER Database, 2023; https://wonder.cdc.gov/wonder/help/mcd-expanded.html
  3. 3. Федеральная служба государственной статистики (Росстат). Оперативные демографические показатели за январь – июнь 2020 г., 2021; https://rosstat.gov.ru/storage/mediabank/BgjLrP31/demogr_01-06.pdf
  4. 4. Богачев Р.С., Михайлова Л.В., Щербанев К.Г. и др. // Электронный науч. журн. “Социальные аспекты здоровья населения”. 2023. Т. 69. № 2; http://vestnik.mednet.ru/content/view/1461/30/lang,ru/
  5. 5. Docherty A.B., Sim M., Oliveira J. et al.// Crit Care. 2017. V. 21. P. 216.
  6. 6. Карибаев К.Р., Маханов Д.И., Майдыров Е.С. и др. // Вестн. Новгородского ГУ. 2018. Т. 112. № 6. C. 59.
  7. 7. Шайтан К.В. // Хим. физика. 2023. Т. 42 №6. С. 40.
  8. 8. Katrukha I.A., Katrukha A.G. // Clinical Chem. 2021. V. 67. № 1. P. 124.
  9. 9. Thygesen K., Alpert J.S., Jaffe A.S., et al.// Circulation. 2018. V. 138. № 20. P. e618.
  10. 10. Babuin L., Jaffe A.S. // CMAJ. 2005. V. 173. № 10. P. 1191.
  11. 11. Алымов М.И., Сеплярский Б.С., Кочетков Р.А. // Хим. физика. 2023. Т. 42. № 8. С. 87.
  12. 12. Reddy K.K., Bandal H., Satyanarayana M. et al. // Adv. Sci. 2020. V. 7. P. 1902980.
  13. 13. Нечаева Н.Л., Сорокина О.Н., Константинова Т.С. и др. // ЖАХ. 2022. Т. 77. № 5. С. 406.
  14. 14. Nechaeva N.L., Sorokina O.N., Konstantinova T.S. et al. // Talanta. 2021. V. 224. P. 121860.
  15. 15. Васильева А.Д., Юрина Л.В., Азарова Д.Ю. и др. // Хим. физика. 2022. T. 41. № 2. C. 51.
  16. 16. Хренова М.Г., Поляков И.В., Немухин А.В. // Хим. физика. 2022. Т. 41. № 6. С. 65.
  17. 17. Мисин В.М., Сажина Н.Н. // Хим. физика. 2010. Т. 29. № 9. C. 56.
  18. 18. Сажина Н.Н., Мисин В.М. // Хим. физика. 2012. T. 31. № 11. C. 48.
  19. 19. Подойницын С.Н., Сорокина О.Н., Коварский А.Л. // Хим. физика. 2016. Т. 35. № 3. С. 84.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library