- PII
- 10.31857/S0207401X24120018-1
- DOI
- 10.31857/S0207401X24120018
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 12
- Pages
- 3-15
- Abstract
- The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.
- Keywords
- гетероциклические соединения циклодиглицин аденин захват одного электрона фрагментация молекулярных ионов массспектрометрия метод CASSCF квазимолекулярная модель
- Date of publication
- 15.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 45
References
- 1. Jochims H.-W., Schwell M., Baumgärtel H. et al. // Chem. Phys. 2005. V. 314. № 1–3. P. 263. https://doi.org/10.1016/j.chemphys.2005.03.008
- 2. Pilling S., Lago A.F., Coutinho L.H. et al. // Rapid Commun. Mass Spectrom. 2007. V. 21. № 22. P. 3646. https://doi.org/10.1002/rcm.3259
- 3. Barreiro-Lage D., Bolognesi P., Chiarinelli J. et al. // J. Phys. Chem. Lett. 2021. V. 12. № 30. P. 7379. https://doi.org/10.1021/acs.jpclett.1c01788
- 4. Chiarinelli J., D. Barreiro-Lage D., Bolognesi P. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 5855. https://doi.org/10.1039/D1CP05811H
- 5. Barreiro-Lage D., Chiarinelli J., Bolognesi P. et al. // Ibid. 2023. V. 25. № 23. P. 15635. https://doi.org/10.1039/D3CP00608E
- 6. Feil S., Gluch K., Matt-Leubner S. et al. // J. Phys. B: At. Mol. Opt. Phys. 2004 V. 37(15). № 3013. https://doi.org/10.1088/0953-4075/37/15/001
- 7. Dawley M.M., Tanzer K., Cantrell W.A. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 45. P. 25039. https://doi.org/10.1039/C4CP03452J
- 8. Van der Burgt P.J.M., Finnegan S., Eden S. // Eur. Phys. J. D. 2015. V. 69. № 173. https://doi.org/10.1140/epjd/e2015-60200-y
- 9. Li B., Ma X., Zhu X. L. et al. // J. Phys. B: At. Mol. Opt. Phys. 2009. V. 42(7). № 075204. https://doi.org/10.1088/0953-4075/42/7/075204
- 10. De Vries J., Hoekstra R., Morgenstern R. et al. // Ibid. 2002. V. 35(21). № 4373. https://doi.org/10.1088/0953-4075/35/21/304
- 11. Tabet J., Eden S., Feil S. et al. // Intern. J. Mass Spectrom. 2010. V. 292. № 1. P. 53. https://doi.org/10.1016/j.ijms.2010.03.002
- 12. Afrosimov V.V., Basalaev A.A., Vasyutinskii O.S. et al. // Eur. Phys. J. D. 2015. V. 69. № 3. https://doi.org/10.1140/epjd/e2014-50435-5
- 13. Басалаев А.А., Кузьмичев В.В., Панов М Н. и др. // Письма в ЖТФ. 2022. Т. 48. № 17. С. 13. https://doi.org/10.21883/PJTF.2022.17.53280.19238
- 14. Basalaev A.A., Kuz’michev V.V., Panov M.N. et al. // Radiat. Phys. Chem. 2022. V. 193(4). № 109984. https://doi.org/10.1016/j.radphyschem.2022.109984
- 15. Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // ЖТФ. 2022. Т. 92. № 7. С. 978. https://doi.org/10.21883/JTF.2022.07.52654.309-21
- 16. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152(15) № 154102. https://doi.org/10.1063/5.0005188
- 17. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22. https://doi.org/10.31857/S0207401X21100034
- 18. Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85. https://doi.org/10.31857/S0207401X22060036
- 19. Храпковский Г.М., Аристов И.В., Егоров Д.Л. и др. // Хим. физика. 2022. Т. 41. № 9. С. 19. https://doi.org/10.31857/S0207401X22070068
- 20. Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // Хим. физика. 2023. Т. 42. № 10. С. 16. https://doi.org/10.31857/S0207401X23100035
- 21. Hush N.S., Cheung A.S. // Chem. Phys. Lett. 1975. V. 34. P. 11.
- 22. Hwang C.T., Stumpf C.L., Yu Y.-Q. et al. // Intern. J. Mass Spectrom. 1999. V. 182/183. P. 253.
- 23. Russo N., Toscano M., Grand A. // J. Comput. Chem. 2000. V. 21. № 14. P. 1243.
- 24. Improta R., Scalmani G., Barone V. // Intern. J. Mass Spectrom. 2000. V. 201. P. 321.
- 25. Janev R.K., Presnyakov L.P. // Phys. Rep. 1981. V. 70. № 1. P. 1. https://doi.org/10.1016/0370-1573 (81)90161-7
- 26. Lin J., Yu C., Peng S., Akiyama I. et al. // J. Amer. Chem. Soc. 1980. V. 102. P. 4627.
- 27. Trofimov A.B., Schirmer J., Kobychev V.B. et al. // J. Phys. B: At. Mol. Opt. Phys. 2006. V. 39. № 2. P. 305. https://doi.org/10.1088/0953-4075/39/2/007
- 28. Arachchilage A.P.W., Wang F., Feyer V. et al. // J. Chem. Phys. 2010. V. 133(17). № 174319. https://doi.org/10.1063/1.3499740
- 29. Franz J., Gianturco F.A. // Eur. Phys. J. D. 2014. V. 68. P. 279. https://doi.org/10.1140/epjd/e2014-50072-0
- 30. Kramida A., Ralchenko Yu., Reader J. et al. // NIST Atomic Spectra Database (version 5.9). 2021. https://doi.org/10.18434/T4W30F