RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

A generalized method for the estimation of the intensity of electron-phonon interaction in photosynthetic pigments using the evolutionary optimization algorithm

PII
10.31857/S0207401X24120041-1
DOI
10.31857/S0207401X24120041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 12
Pages
40-52
Abstract
Modeling of the optical response of photosynthetic pigments is an essential part of the study of fundamental physical processes of interaction of multi-atomic molecules with an external electromagnetic field. The use of semiclassical quantum theories in this case is more preferable than the use of ab initio methods for calculating the ground and excited states of a molecule, since semiclassical theories allow us to use characteristic functions, such as spectral density, to calculate absorption spectra rather than to take into account the full set of electron and atom configurations. The main disadvantage of this approach is the necessity of constant comparison of the calculated and experimental spectra and, as a consequence, the need to justify the uniqueness of the obtained parameters of the system under study and to evaluate their statistical significance. One of the possible options to significantly improve the quality of the optical response calculation is the use of a heuristic evolutionary optimization algorithm that minimizes the difference between the measured and theoretical spectra by determining the most appropriate set of model parameters. Using the spectra of photosynthetic pigments measured in different solvents as an example, we have shown that the modeling optimization not only allows us to obtain a good agreement between the calculated and experimental data, but also to unambiguously determine such parameters of the theory as the electron-phonon interaction coefficients for the electronic excited states of chlorophyll, lutein and β-carotene.
Keywords
хлорофилл a лютеин β-каротин спектральная плотность теория многомодовых броуновских осцилляторов алгоритмы оптимизации дифференциальная эволюция
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Jang S.J., Mennucci B. // Rev. Mod. Phys. 2018. V. 90. № 035003. https://doi.org/10.1103/RevModPhys.90.035003
  2. 2. Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249. https://doi.org/10.1021/acs.chemrev.6b00002
  3. 3. Горохов В.В., Нокс П.П., Корватовский Б.Н. и др. // Хим. физика. 2023. Т. 42. № 6. С. 63. https://doi.org/10.31857/S0207401X23060055
  4. 4. Blankenship R. E. Molecular Mechanisms of Photosynthesis. 2nd ed., Oxford: Wiley-Blackwell, 2014.
  5. 5. Renger T., Madjet M.E.A., Busch M.S.A. et al. // Photosynth. Res. 2013. V. 116. P. 367. https://doi.org/10.1007/s11120-013-9893-3
  6. 6. Черепанов Д.А., Милановский Г.Е., Айбуш А.В. и др. // Хим. физика. 2023. Т. 42. № 6. С. 77. https://doi.org/10.31857/S0207401X23060031
  7. 7. Renger T. // J. Phys. Chem. B. 2021. V. 125. № 4. P. 6406. https://doi.org/10.1021/acs.jpcb.1c01479
  8. 8. Novoderezhkin V. I., Romero E., Dekker J.P. et al. // ChemPhysChem. 2011. V. 12. № 3. P. 681. https://doi.org/10.1002/cphc.201000830
  9. 9. Bruggemann B., Sznee K., Novoderezhkin V. et al. // J. Phys. Chem. B. 2004. V. 108. № 35. P. 13536. https://doi.org/10.1021/jp0401473
  10. 10. Brixner T., Hildner R., Kohler J. et al. // Adv. Energy Mater. 2017. V. 7. № 16. P. 1700236. https://doi.org/10.1002/aenm.201700236
  11. 11. Croce R., van Amerongen H. // Nat. Chem. Biol. 2014. V. 10. P. 492. https://doi.org/10.1038/nchembio.1555
  12. 12. Черепанов Д.А., Милановский Г.Е., Надточенко В.А. и др. // Хим. физика. 2023. Т. 42. № 6. С. 88. https://doi.org/10.31857/S0207401X23060043
  13. 13. Nelson T.R., White A.J., Bjorgaard J.A. et al. // Chem. Rev. 2020. V. 120. № 4. Р. 2215. https://doi.org/10.1021/acs.chemrev.9b00447
  14. 14. Cremer D., Pople J.A. // J. Amer. Chem. Soc. 1975. V. 97. № 6. P. 1354. https://doi.org/10.1021/ja00839a011
  15. 15. Ditchfield R., Hehre W.J., Pople J.A. // J. Chem. Phys. 1971. V. 54. № 2. P. 724. https://doi.org/10.1063/1.1674902
  16. 16. Хренова М.Г., Поляков И.В., Немухин А.В. // Хим. физика. 2022. Т. 41. № 6. С. 65. https://doi.org/10.31857/S0207401X22060061
  17. 17. Mukamel S. Principles of Nonlinear Optical Spectroscopy. New York, Oxford: Oxford University Press, 1995.
  18. 18. Chesalin D.D., Kulikov E.A., Yaroshevich I.A. et al. // Swarm Evol. Comput. 2022. V. 75. № 101210. https://doi.org/10.1016/j.swevo.2022.101210
  19. 19. Storn R. // IEEE Trans. Evol. Comput. 1999. V. 3. № 1. P. 22. https://doi.org/10.1109/4235.752918
  20. 20. Storn R., Price K. // J. Global Optim. 1997. V. 11. P. 341. https://doi.org/10.1023/A:1008202821328
  21. 21. Opara K.R., Arabas J. // Swarm Evol. Comput. 2019. V. 44. P. 546. https://doi.org/10.1016/j.swevo.2018.06.010
  22. 22. Гудков С.В., Саримов Р.М., Асташев М.Е. и др. // УФН. 2024. Т. 194 С. 208. https://doi.org/10.3367/UFNr.2023.09.039577
  23. 23. Pishchalnikov R.Y., Yaroshevich I.A., Zlenko D.V. et al. // Photosynth. Res. 2023. V. 156. № 1. P. 3. https://doi.org/10.1007/s11120-022-00955-2
  24. 24. Pishchalnikov R.Y., Yaroshevich I.A., Slastnikova T.A. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 46. Р. 25707. https://doi.org/10.1039/c9cp04508b
  25. 25. Balevičius V., Abramavicius D., Polívka T. // J. Phys. Chem. Lett. 2016. V. 7. № 17. P. 3347. https://doi.org/10.1021/acs.jpclett.6b01455
  26. 26. Uragami C., Saito K., Yoshizawa M., Molnar P. et al. // Arch. Biochem. Biophys. 2018. V. 650. P. 49. https://doi.org/10.1016/j.abb.2018.04.021
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library