- PII
- 10.31857/S0207401X24120071-1
- DOI
- 10.31857/S0207401X24120071
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 43 / Issue number 12
- Pages
- 66-83
- Abstract
- The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.
- Keywords
- фотоионизация органическая фотовольтаика разделение зарядов
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Brédas J.-L., Norton J.E., Cornil J., Coropceany V. // Acc. Chem. Res. 2009. V. 42. No. 11. P. 1691. https://doi.org/10.1021/ar900099h
- 2. Clarke T.M., Durrant J.R. // Chem. Rev. 2010. V. 110. № 11. P. 6736. https://doi.org/10.1021/cr900271s
- 3. Sosorev A.Yu., Godovsky D.Yu., Paraschuk D.Yu. // Phys. Chem. Chem. Phys. 2018. V. 20. № 5. P. 3658. https://doi.org/10.1039/c7cp06158g
- 4. Лукин Л.В. // Хим. физика. 2023. T. 42. № 12. С. 54. https://doi.org/10.31857/S0207401X23120075
- 5. Vandewal K. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 113. https://doi.org/10.1146/annurev-physchem-040215- 112144
- 6. Jailaubekov A.E., Willard A.P., Tritsch J.R. et al. // Nature Mater. 2013. V. 12. P. 66. https://doi.org/10.1038/NMAT3500
- 7. Chen K., Barker A.J., Reish M.E., Gordon K.C., Hodgkiss J.M. // J. Am. Chem. Soc. 2013. V. 135. № 49. P. 18502. https://doi.org/dx.doi.org/10.1021/ja408235h
- 8. Grancini G., Maiuri M., Fazzi D. et al. // Nature Mater. 2013. V. 12. № 1. P. 29. https://doi.org/10.1038/NMAT3502
- 9. Bakulin A.A., Rao A., Pavelyev V.G. et al.// Science. 2012. V. 335. № 6074. P. 1340.
- 10. Ohkita H., Cook S., Astuti Y. et al. // J. Am. Chem. Soc. 2008. V. 130. № 10. P. 3030.
- 11. Gélinas S., Rao A., Kumar A. et al. // Science. 2014. V. 343. № 6170. P. 512 –516.
- 12. Jakowetz A.C., Böhm M.L., Zhang J. et al. // J. Am. Chem. Soc. 2016. V. 138. №. 36. P. 11672. https://doi.org/10.1021/jacs.6b05131
- 13. Vandewal K., Albrecht S., Hoke E.T. et al.// Nature Mater. 2014. V.13. P. 63.
- 14. Servaites J.D., Savoie B.M., Brink J.B., Marks T.J., Ratner M.A. // Energy Environ. Sci. 2012. V. 5. № 8. P. 8343.
- 15. Hilczer M., Tachiya M. // J. Phys. Chem. C. 2010. V. 114. № 14. P. 6808.
- 16. Trukhanov V.A., Bruevich V.V., Paraschuk D.Y. // Phys. Rev. B: Condens. Matter Mater. Phys. 2011. V. 84. № 20. 205318.
- 17. Wiemer M., Nenashev A.V., Jansson F., Baranovskii S.D. // Appl. Phys. Lett. 2011. V. 99. № 1. 013302. https://doi.org/10.1063/1.3607481
- 18. Baranovskii S.D., Wiemer M., Nenashev A.V., Jansson F., Gebhard F. // J. Phys. Chem. Lett. 2012. V. 3. № 9. P. 1214. https://doi.org/10.1021/jz300123k
- 19. Tscheuschner S., Bässler H., Huber K., Köhler A. // J. Phys. Chem. B. 2015. V. 119. № 32. P. 10359. https://doi.org/10.1021/acs.jpcb.5b05138
- 20. Lukin L.V. // Chem. Phys. 2021. V. 551. № 111327. https://doi.org/10.1016/j.chemphys.2021.111327
- 21. Devižis A., Serbenta A., Meerholz K., Hertel D., Gulbinas V. // Phys. Rev. Lett. 2009. V. 103. № 2. 027404. https://doi.org/10.1103/PhysRevLett.103.027404
- 22. Vithanage D.A., Devižis A., Abramavičius V. et al. // Nature Commun. 2013. V. 4. № 2334. https://doi.org/10.1038/ncomms3334
- 23. Melianas A., Pranculis V., Xia Y., Felekidis N., Gulbinas V., Kemerink M. // Adv. Energy Mater. 2017. V. 7. № 9. 1602143.
- 24. Baranovski S., Rubel O. // Charge Transport in Disordered Solids with Application in Electronics / Ed. Baranovski. Chichester: S. John Wiley & Sons, 2006. P. 221.
- 25. Onsager L. // Phys. Rev. 1938. V. 54. № 8. P. 554.
- 26. Seki K., Wojcik M. // J. Phys. Chem. C. 2017. V. 121. No. 6. P. 3632.
- 27. Hong K.M., Noolandi J. // J. Chem. Phys. 1978. V. 68. № 11. P. 5163.
- 28. Mauzerall D., Ballard S.G. // Annu. Rev. Phys. Chem. 1982. V. 33. P. 377.
- 29. Martens H.C.F., Huiberts J.N., Blom P.W.M. // Appl. Phys. Lett. 2000. V. 77. № 12. P. 1852. https://doi.org/10.1063/1.1311599
- 30. Kumar A., Bhatnagar P.K., Mathur P.C., Husain M., Sengupta S., Kumar J. // J. Appl. Phys. 2005. V. 98. № 2. 024502. https://doi.org/10.1063/1.1968445
- 31. Coakley K.M., McGehee M.D. // Chem. Mater. 2004. V. 16. № 23. P. 4533. https://doi.org/10.1021/cm049654n
- 32. Noriega R., Rivnay J., Vandewal K. et al. // Nature Mater. 2013. V. 12. P. 1038.
- 33. Devižis A., Hertel D., Meerholz K., Gulbinas V., Moser J.-E. // Organic Electronics. 2014. V. 15. № 12. Р. 3729.
- 34. Mihailetchi V.D., van Duren J.K.J., Blom P.W.M. et al. // Adv. Funct. Mater. 2003. V.13. № 1. P. 43.
- 35. Kobayashi S., Takenobu T., Mori S., Fujiwara A., Iwasa Y. // Sci. Technol. Adv. Mater. 2003. V. 4. № 4. P. 371.
- 36. Noolandi J., Hong K.M. // J. Chem. Phys. 1979. V. 70. № 7. P. 3230.
- 37. Bakulin A.A., Dimitrov S.D., Rao A. et al. // J. Phys. Chem. Lett. 2013. V. 4. № 1. P. 209. https://doi.org/10.1021/jz301883y
- 38. Bakulin A.A., Silva C., Vella E. // J. Phys. Chem. Lett. 2016. V. 7. № 2. P. 250. https://doi.org/10.1021/acs.jpclett.5b01955
- 39. Dong Y., Cha H., Zhang J. et al. // J. Chem. Phys. 2019. V. 150. № 10. 104704. https://doi.org/10.1063/1.5079285
- 40. Hahn T., Geiger J., Blase X. et al. // Adv. Funct. Mater. 2015. V. 25. № 8. P. 1287. https://doi.org/10.1002/adfm.201403784
- 41. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2022. Т. 41. № 4. С. 32. https://doi.org/10.31857/S0207401X22040094
- 42. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65. https://doi.org/10.31857/S0207401X21110030
- 43. Симбирцева Г.В., Бабенко С.Д. // Хим. физика. 2023. Т. 42. № 12. С. 64. https://doi.org/10.31857/S0207401X23120117
- 44. Marcus R.A., Sutin N. // Biochim. Biophys. Acta Rev. Bioenergetics. 1985. V. 811. № 3. P. 265. https://doi.org/10.1016/0304-4173 (85)90014-X
- 45. Williams R.M., Zwier J.M., Verhoeven J.W. // J. Am. Chem. Soc. 1995. V. 117. № 14. P. 4093. https://doi.org/10.1021/ja00119a025
- 46. Leng С., Qin H., Si Y., Zhao Y. // J. Phys. Chem. C. 2014. V. 118. № 4. P. 1843.
- 47. Yan H., Chen S., Lu M. et al. // Mater. Horiz. 2014. V. 1. № 2. P. 247. https://doi.org/10.1039/C3MH00105A
- 48. Vandewal K., Tvingstedt K., Gadisa A., Inganäs O., Manca J.V. // Phys. Rev. B. 2010. V.81. № 12. 125204. https://doi.org/10.1103/PhysRevB.81.125204
- 49. Unger T., Wedler S., Kahle F.J., Scherf U., Bässler H., Köhler A. // J. Phys. Chem. C. 2017. V. 121. № 41. P. 22739. https://doi.org/10.1021/acs.jpcc.7b09213
- 50. Wang Y., Cheng L.T. // J. Phys. Chem. 1992. V. 96. № 4. P. 1530.
- 51. Wang Y. // J. Phys. Chem. 1992. V. 96. № 2. P. 764.
- 52. Ward A.J., Ruseckas A., Kareem M.M. et al.// Advan. Mater. 2015. V. 27. № 15. P. 2496. https://doi.org/10.1002/adma.201405623
- 53. Karsten B.P., Bouwer R.K.M., Hummelen J.C., Williams R.M., Janssen R.A.J. // Photochem. Photobiol. Sci. 2010. V.9. № 7. P. 1055. https://doi.org/10.1039/c0pp00098a
- 54. Veldman D., Chopin S.M.A., Meskers S.C.J., Janssen R.A.J. // J. Phys. Chem. A. 2008. V. 112. № 37. P. 8617. https://doi.org/10.1021/jp805949r
- 55. Liu T., Cheung D.L., Troisi A. // Phys. Chem. Chem. Phys. 2011. V. 13. № 48. P. 21461. https://doi.org/10.1039/C1CP23084K