RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Photogeneration of charge carriers in organic solar cells. The role of nonequilibrium states for electrons and holes

PII
10.31857/S0207401X24120071-1
DOI
10.31857/S0207401X24120071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 43 / Issue number 12
Pages
66-83
Abstract
The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.
Keywords
фотоионизация органическая фотовольтаика разделение зарядов
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Brédas J.-L., Norton J.E., Cornil J., Coropceany V. // Acc. Chem. Res. 2009. V. 42. No. 11. P. 1691. https://doi.org/10.1021/ar900099h
  2. 2. Clarke T.M., Durrant J.R. // Chem. Rev. 2010. V. 110. № 11. P. 6736. https://doi.org/10.1021/cr900271s
  3. 3. Sosorev A.Yu., Godovsky D.Yu., Paraschuk D.Yu. // Phys. Chem. Chem. Phys. 2018. V. 20. № 5. P. 3658. https://doi.org/10.1039/c7cp06158g
  4. 4. Лукин Л.В. // Хим. физика. 2023. T. 42. № 12. С. 54. https://doi.org/10.31857/S0207401X23120075
  5. 5. Vandewal K. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 113. https://doi.org/10.1146/annurev-physchem-040215- 112144
  6. 6. Jailaubekov A.E., Willard A.P., Tritsch J.R. et al. // Nature Mater. 2013. V. 12. P. 66. https://doi.org/10.1038/NMAT3500
  7. 7. Chen K., Barker A.J., Reish M.E., Gordon K.C., Hodgkiss J.M. // J. Am. Chem. Soc. 2013. V. 135. № 49. P. 18502. https://doi.org/dx.doi.org/10.1021/ja408235h
  8. 8. Grancini G., Maiuri M., Fazzi D. et al. // Nature Mater. 2013. V. 12. № 1. P. 29. https://doi.org/10.1038/NMAT3502
  9. 9. Bakulin A.A., Rao A., Pavelyev V.G. et al.// Science. 2012. V. 335. № 6074. P. 1340.
  10. 10. Ohkita H., Cook S., Astuti Y. et al. // J. Am. Chem. Soc. 2008. V. 130. № 10. P. 3030.
  11. 11. Gélinas S., Rao A., Kumar A. et al. // Science. 2014. V. 343. № 6170. P. 512 –516.
  12. 12. Jakowetz A.C., Böhm M.L., Zhang J. et al. // J. Am. Chem. Soc. 2016. V. 138. №. 36. P. 11672. https://doi.org/10.1021/jacs.6b05131
  13. 13. Vandewal K., Albrecht S., Hoke E.T. et al.// Nature Mater. 2014. V.13. P. 63.
  14. 14. Servaites J.D., Savoie B.M., Brink J.B., Marks T.J., Ratner M.A. // Energy Environ. Sci. 2012. V. 5. № 8. P. 8343.
  15. 15. Hilczer M., Tachiya M. // J. Phys. Chem. C. 2010. V. 114. № 14. P. 6808.
  16. 16. Trukhanov V.A., Bruevich V.V., Paraschuk D.Y. // Phys. Rev. B: Condens. Matter Mater. Phys. 2011. V. 84. № 20. 205318.
  17. 17. Wiemer M., Nenashev A.V., Jansson F., Baranovskii S.D. // Appl. Phys. Lett. 2011. V. 99. № 1. 013302. https://doi.org/10.1063/1.3607481
  18. 18. Baranovskii S.D., Wiemer M., Nenashev A.V., Jansson F., Gebhard F. // J. Phys. Chem. Lett. 2012. V. 3. № 9. P. 1214. https://doi.org/10.1021/jz300123k
  19. 19. Tscheuschner S., Bässler H., Huber K., Köhler A. // J. Phys. Chem. B. 2015. V. 119. № 32. P. 10359. https://doi.org/10.1021/acs.jpcb.5b05138
  20. 20. Lukin L.V. // Chem. Phys. 2021. V. 551. № 111327. https://doi.org/10.1016/j.chemphys.2021.111327
  21. 21. Devižis A., Serbenta A., Meerholz K., Hertel D., Gulbinas V. // Phys. Rev. Lett. 2009. V. 103. № 2. 027404. https://doi.org/10.1103/PhysRevLett.103.027404
  22. 22. Vithanage D.A., Devižis A., Abramavičius V. et al. // Nature Commun. 2013. V. 4. № 2334. https://doi.org/10.1038/ncomms3334
  23. 23. Melianas A., Pranculis V., Xia Y., Felekidis N., Gulbinas V., Kemerink M. // Adv. Energy Mater. 2017. V. 7. № 9. 1602143.
  24. 24. Baranovski S., Rubel O. // Charge Transport in Disordered Solids with Application in Electronics / Ed. Baranovski. Chichester: S. John Wiley & Sons, 2006. P. 221.
  25. 25. Onsager L. // Phys. Rev. 1938. V. 54. № 8. P. 554.
  26. 26. Seki K., Wojcik M. // J. Phys. Chem. C. 2017. V. 121. No. 6. P. 3632.
  27. 27. Hong K.M., Noolandi J. // J. Chem. Phys. 1978. V. 68. № 11. P. 5163.
  28. 28. Mauzerall D., Ballard S.G. // Annu. Rev. Phys. Chem. 1982. V. 33. P. 377.
  29. 29. Martens H.C.F., Huiberts J.N., Blom P.W.M. // Appl. Phys. Lett. 2000. V. 77. № 12. P. 1852. https://doi.org/10.1063/1.1311599
  30. 30. Kumar A., Bhatnagar P.K., Mathur P.C., Husain M., Sengupta S., Kumar J. // J. Appl. Phys. 2005. V. 98. № 2. 024502. https://doi.org/10.1063/1.1968445
  31. 31. Coakley K.M., McGehee M.D. // Chem. Mater. 2004. V. 16. № 23. P. 4533. https://doi.org/10.1021/cm049654n
  32. 32. Noriega R., Rivnay J., Vandewal K. et al. // Nature Mater. 2013. V. 12. P. 1038.
  33. 33. Devižis A., Hertel D., Meerholz K., Gulbinas V., Moser J.-E. // Organic Electronics. 2014. V. 15. № 12. Р. 3729.
  34. 34. Mihailetchi V.D., van Duren J.K.J., Blom P.W.M. et al. // Adv. Funct. Mater. 2003. V.13. № 1. P. 43.
  35. 35. Kobayashi S., Takenobu T., Mori S., Fujiwara A., Iwasa Y. // Sci. Technol. Adv. Mater. 2003. V. 4. № 4. P. 371.
  36. 36. Noolandi J., Hong K.M. // J. Chem. Phys. 1979. V. 70. № 7. P. 3230.
  37. 37. Bakulin A.A., Dimitrov S.D., Rao A. et al. // J. Phys. Chem. Lett. 2013. V. 4. № 1. P. 209. https://doi.org/10.1021/jz301883y
  38. 38. Bakulin A.A., Silva C., Vella E. // J. Phys. Chem. Lett. 2016. V. 7. № 2. P. 250. https://doi.org/10.1021/acs.jpclett.5b01955
  39. 39. Dong Y., Cha H., Zhang J. et al. // J. Chem. Phys. 2019. V. 150. № 10. 104704. https://doi.org/10.1063/1.5079285
  40. 40. Hahn T., Geiger J., Blase X. et al. // Adv. Funct. Mater. 2015. V. 25. № 8. P. 1287. https://doi.org/10.1002/adfm.201403784
  41. 41. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2022. Т. 41. № 4. С. 32. https://doi.org/10.31857/S0207401X22040094
  42. 42. Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 11. С. 65. https://doi.org/10.31857/S0207401X21110030
  43. 43. Симбирцева Г.В., Бабенко С.Д. // Хим. физика. 2023. Т. 42. № 12. С. 64. https://doi.org/10.31857/S0207401X23120117
  44. 44. Marcus R.A., Sutin N. // Biochim. Biophys. Acta Rev. Bioenergetics. 1985. V. 811. № 3. P. 265. https://doi.org/10.1016/0304-4173 (85)90014-X
  45. 45. Williams R.M., Zwier J.M., Verhoeven J.W. // J. Am. Chem. Soc. 1995. V. 117. № 14. P. 4093. https://doi.org/10.1021/ja00119a025
  46. 46. Leng С., Qin H., Si Y., Zhao Y. // J. Phys. Chem. C. 2014. V. 118. № 4. P. 1843.
  47. 47. Yan H., Chen S., Lu M. et al. // Mater. Horiz. 2014. V. 1. № 2. P. 247. https://doi.org/10.1039/C3MH00105A
  48. 48. Vandewal K., Tvingstedt K., Gadisa A., Inganäs O., Manca J.V. // Phys. Rev. B. 2010. V.81. № 12. 125204. https://doi.org/10.1103/PhysRevB.81.125204
  49. 49. Unger T., Wedler S., Kahle F.J., Scherf U., Bässler H., Köhler A. // J. Phys. Chem. C. 2017. V. 121. № 41. P. 22739. https://doi.org/10.1021/acs.jpcc.7b09213
  50. 50. Wang Y., Cheng L.T. // J. Phys. Chem. 1992. V. 96. № 4. P. 1530.
  51. 51. Wang Y. // J. Phys. Chem. 1992. V. 96. № 2. P. 764.
  52. 52. Ward A.J., Ruseckas A., Kareem M.M. et al.// Advan. Mater. 2015. V. 27. № 15. P. 2496. https://doi.org/10.1002/adma.201405623
  53. 53. Karsten B.P., Bouwer R.K.M., Hummelen J.C., Williams R.M., Janssen R.A.J. // Photochem. Photobiol. Sci. 2010. V.9. № 7. P. 1055. https://doi.org/10.1039/c0pp00098a
  54. 54. Veldman D., Chopin S.M.A., Meskers S.C.J., Janssen R.A.J. // J. Phys. Chem. A. 2008. V. 112. № 37. P. 8617. https://doi.org/10.1021/jp805949r
  55. 55. Liu T., Cheung D.L., Troisi A. // Phys. Chem. Chem. Phys. 2011. V. 13. № 48. P. 21461. https://doi.org/10.1039/C1CP23084K
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library