RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Dynamics and energy of combustion of ultra-lean mixtures of hydrogen with air in a limited volume

PII
10.31857/S0207401X25070111-1
DOI
10.31857/S0207401X25070111
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 7
Pages
106-114
Abstract
In this paper, the combustion dynamics inside a closed volume filled with pre-mixed hydrogen-air mixtures with a composition close to the lower flammability limit is investigated based on a detailed numerical analysis. A comparison of flame evolution features is made depending on the initiation mechanism: a point ignition source or continuous heat supply from a heated region on the reactor wall. It is shown that with point ignition, the completeness of hydrogen combustion is significantly lower than with heat supply from the wall. It is also found that, despite the low chemical activity of ultra-lean hydrogen-air mixtures, the combustion process has a positive balance between the energy release during chemical reactions and the heat supplied to the reactor from the heated wall.
Keywords
ультрабедная водородно-воздушная смесь нестационарное горение конвективные течения численное моделирование тепловыделение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Makhviladze G. M., Yakush S. E. // Proc. Comb. Inst. 2002. V. 29. P. 195. https://doi.org/10.1016/S1540-7489 (02)80028-1
  2. 2. Ciccarelli G., Dorofeev S. // Prog. Energy Combust. Sci. 2008. V. 34(4). P. 499.
  3. 3. Lovachev L.A. // Combust. Sci. Technol. 1978. V. 18. P. 153. https://doi.org/10.1080/00102207808946847
  4. 4. Ronney P. D. // Combust. and Flame. 1990. V. 82. P. 1. https://doi.org/10.1016/0010-2180 (90)90074-2
  5. 5. Shoshin Y., van Oijen J., Sepman A., de Goey L. // Proc. Comb. Inst. 2011. V. 33. P. 1211. https://doi.org/10.1016/j.proci.2010.06.030
  6. 6. Coward H.F., Jones G.W. Limits of flammability of gases and vapors. Bulletin 503, US Bureau of Mines, 1952
  7. 7. Levy A. // Proc. R. Soc. A. 1965. V. 283. P. 134. https://doi.org/10.1098/rspa.1965.0011
  8. 8. Babkin V.S., V’yun A.V. // Combust., Explos. Shock Waves. 1976. V. 12. P. 196. https://doi.org/10.1007/BF00744886
  9. 9. Babkin V.S., Zamashchikov V.V., Badalyan A.M. et. al. // Combust. Explos. Shock Waves. 1982. V. 18. P. 164. https://doi.org/10.1007/BF00789613
  10. 10. Volodin V.V., Golub V.V., Kiverin A.D. et al. // Combust. Sci. Technol. 2020. V. 193. № 2. P. 225. https://doi.org/10.1080/00102202.2020.1748606
  11. 11. Yakovenko I., Kiverin A., Melnikova K. // Fluids. 2021. V. 6. P. 21. https://doi.org/10.3390/fluids6010021
  12. 12. Carmel M.K. Experimental results pertaining to the performance of thermal igniters / NUREG/CR-5079; SAND-87-3139. Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology; Sandia National Labs., Albuquerque, NM, USA, 1989.
  13. 13. Yakovenko I., Melnikova K., Kiverin A. // Acta Astronaut. 2024. V. 225. P. 218. https://doi.org/10.1016/j.actaastro.2024.09.013
  14. 14. Kuo K . Principles of combustion. 2nd ed. Hoboken. New Jersey: Wiley InterScience; 2005. ISBN 0-471-04689-2.
  15. 15. Rehm R.G., Baum H.R. // J. Res. Natl. Bur. Stand. 1978. V. 83. Issue 3. P. 297.
  16. 16. McGrattan K., McDermott R., Hostikka S. et al. Fire Dynamics Simulator Technical Reference Guide V. 1: Mathematical Model, Tech. Rep. NIST Special Publication 1018-1. U.S. Department of Commerce, National Institute of Standards and Technology. Gaithersburg, MD, 2019. https://doi.org/10.6028/NIST.SP.1018
  17. 17. NRG computational package for reactive flows modeling. https://github.com/yakovenko-ivan/NRG
  18. 18. Yakovenko I., Kiverin A. // Fire. 2023. V. 6. P. 23. https://doi.org/10.3390/fire6060239
  19. 19. Bykov V., Kiverin A., Koksharov A., Yakovenko I. // Comput. Fluids. 2019. V. 194. P. 104310.
  20. 20. Keromnes A., Metcalfe W.K., Heufer K.A. et al. // Combust. and Flame. 2013. V. 160. № 6. P. 995. https://doi.org/10.1016/j.combustflame.2013.01.001
  21. 21. Lovachev L.A. // Ibid. 1976. V. 27. P. 125. https://doi.org/10.1016/0010-2180 (76)90012-2
  22. 22. Buckmaster J. // Combust. Sci. Technol. 1992. V. 84. P. 163. https://doi.org/10.1080/00102209208951851
  23. 23. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 8. С. 68.
  24. 24. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 12. С. 48.
  25. 25. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2024. Т. 43. № 7. С.73.
  26. 26. Тереза А.М., Агафонов Г.Л., Андержанов Е.К. и др. // Хим. физика. 2023. Т. 42. № 3. С. 70.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library