- PII
- 305187-690178-1
- DOI
- 10.7868/30178-1
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 44 / Issue number 6
- Pages
- 43-54
- Abstract
- The effect of bilirubin on the spectral fluorescence properties of the cationic thiacarbocyanine dye Cyan 2 in the presence of DNA was studied. The Cyan 2 dye forms a non-covalent complex with DNA, which leads to an increase in the fluorescence of the dye. Interaction with bilirubin leads to effective quenching of dye fluorescence in complex with DNA (static mechanism), which can be used to construct a spectral-fluorescent sensor for bilirubin. The results of in vitro experiments are illustrated by in silico molecular docking experiments. The effect of Cu2+ ion additives can further enhance the quenching of dye fluorescence by bilirubin. Effective quenching constants and detection limits of bilirubin using the Cyan 2–DNA system (LOD and LOQ) are determined.
- Keywords
- тиакарбоцианиновый краситель ДНК комплексообразование билирубин спектрально-флуоресцентные зонды тушение флуоресценции
- Date of publication
- 16.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 89
References
- 1. Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. No. 19. P. 6367. https://doi.org/10.3390/molecules27196367
- 2. Татиколов А.С., Пронкин П.Г., Шведова Л.А., Панова И.Г. // Хим. физика. 2019. Т. 38. № 12. С. 11. https://doi.org/10.1134/S0207401X19120185
- 3. Kim S.Y., Park S.C. // Front. Pharmacol. 2012. V. 3, P. 45. https://doi.org/10.3389/fphar.2012.00045
- 4. Татиколов А.С., Панова И.Г. // Хим. физика. 2024. T.43. № 11. С. 3. https://doi.org/10.1134/S1990793124701173
- 5. Soto Conti C.P. // Arch. Argent. Pediatr. 2021. V. 119. No. 1. e18. https://doi.org/10.5546/aap.2021.eng.e18
- 6. Tatikolov A.S., Pronkin P.G., Panova I.G. // Biophys. Chem. 2025. V. 318. P. 107378. https://doi.org/10.1016/j.bpc.2024.107378
- 7. Singla N., Ahmad M., Mahajan V., Singh P., Kumar S. // Sens. Diagn. 2023. V. 2. P. 1574. http://dx.doi.org/10.1039/D3SD00157A
- 8. Karmakar S., Das T.K., Kundu S., Maiti S., Saha A. // ACS Appl. Bio Mater. 2020. V. 3. P. 8820. https://doi.org/10.1021/acsabm.0c01165
- 9. Xiao W., Liu J., Xiong Y. et al. // Anal. Bioanal. Chem. 2021. V. 413. P. 7009. https://doi.org/10.1007/s00216-021-03660-6
- 10. Speck, W., Behrman, R. // Pediatr. Res. 1974. V. 8. P. 451. https://doi.org/10.1203/00006450-197404000-00665
- 11. Velapoldi R.A., Menis O. // Clinical Chem. 1971. V. 17. No. 12. P. 1165. PMID: 5118155
- 12. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Biochim. Biophys. Acta. 1999. V. 1428. No. 2–3. P. 201. https://doi.org/10.1016/s0304-4165 (99)00075-6
- 13. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Toxicology Lett. 2002. V. 131. № 3. P. 181. https://doi.org/10.1016/s0378-4274 (02)00031-0
- 14. Акимкин Т.М., Татиколов А.С., Ярмолюк С.М. // Химия высоких энергий. 2011. Т. 45. № 3. С. 252.
- 15. Yarmoluk S.M., Lukashov S.S., Losytskyy M.Y., Akerman B., Kornyushyna O.S. // Spectrochim. Acta. Part A. 2002. V. 58. No. 14. P. 3223. https://doi.org/10.1016/S1386-1425 (02)00100-2
- 16. Xu C., Losytskyy M.Y., Kovalska V.B., Kryvorotenko D.V. et al. // J. Fluoresc. 2007. V. 17. P. 671. https://doi.org/10.1007/s10895-007-0215-z
- 17. Tatikolov A.S., Akimkin T.M., Pronkin P.G., Yarmoluk S.M. // Chem. Phys. Lett. 2013. V. 556. P. 287. https://doi.org/10.1016/j.cplett.2012.11.097
- 18. Mukerjee P., Ostrow J.D., Tiribelli C. // BMC Biochemistry. 2002. V. 3. P. 17. https://doi.org/10.1186/1471-2091-3-17
- 19. Baguley B.C., Falkenhaug E.M. // Nucl. Acids Res. 1978. V. 5. No. 1. P. 161. https://doi.org/10.1093/nar/5.1.161
- 20. Lakowicz J.R. Principles of Fluorescence Spectroscopy, 3rd ed. Springer, 2006.
- 21. ISBN: 978-0-387-31278-1
- 22. Hubaux A., Vos G.// Anal. Chem. 1970. V. 42. No. 8. P. 849. https://doi.org/10.1021/ac60290a013
- 23. MacDougall D., Crummett W.B. et al. // Anal. Chem. 1980. V. 52. P. 2242. https://doi.org/10.1021/ac50064a004
- 24. Valdes-Tresanco M.S., Valdes-Tresanco, M.E., Valiente, P.A., Moreno E. // Biol. Direct. 2020. V. 15. P. 12. https://doi.org/10.1186/s13062-020-00267-2
- 25. Drew H.R., Wing R.M., Takano T. et al. // Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 2179. https://doi.org/10.1073/pnas.78.4.2179
- 26. Dautant A., Langlois d’Estaintot B., Gallois B., Brown T., Hunter W.N. // Nucl. Acids Res. 1995. V. 23. P. 1710. https://doi.org/10.1093/nar/23.10.1710
- 27. Yang Z., Lasker K., Schneidman-Duhovny D. et al. // J. Struct. Biol. 2012. V. 179. P. 269. https://doi.org/10.1016/j.jsb.2011.09.006
- 28. Hanwell M.D., Curtis D.E., Lonie D.C. et al. // J. Cheminformatics. 2012. V. 4. P. 1. https://doi.org/10.1186/1758-2946-4-17
- 29. Пронкин П.Г., Шведова Л.А., Татиколов А.С. // Хим. физика. 2024. Т. 43. № 3. С. 3. https://doi.org/10.31857/S0207401X24030016
- 30. Пронкин П.Г., Татиколов А.С. // Химия высоких энергий. 2009. Т. 43. №. 6. С. 527.
- 31. Пронкин П.Г., Татиколов А.С. // Химия высоких энергий. 2011. Т. 45. №. 2. С. 169.
- 32. Пронкин П.Г., Татиколов А.С. // Хим. физика. 2021. T. 40. № 2. C. 3. https://doi.org/10.31857/S0207401X2102014X
- 33. Пронкин П.Г., Татиколов А.С. // Хим. физика. 2022. T. 41. № 2. С. 3. https://doi.org/10.31857/S0207401X22020091
- 34. Yarmoluk S.M., Lukashov S.S., Ogul’chansky T.Y., Losytskyy M.Y., Kornyushyna O.S. // Biopolym. (Biospectrosc.). 2001. V. 62. P. 219. https://doi.org/10.1002/bip.1016
- 35. Galhano J., Marcelo G.A., Santos H.M. et al. // Chemosensors. 2022. V. 10. P. 80. https://doi.org/10.3390/chemosensors10020080
- 36. Hanmeng O., Chailek N., Charoenpanich A. et al. // Spectrochim. Acta, Part A. 2020. V. 240. P. 118606. https://doi.org/10.1016/j.saa.2020.118606
- 37. Chen X., Nam S.W., Kim G.H. et al. // Chem. Commun. 2010. V. 46. No. 47. P. 8953. http://dx.doi.org/10.1039/C0CC03398G
- 38. Li J., Ge J., Zhang Z. et al. // Sens. Actuators, B. 2019. V. 296. P. 126578. https://doi.org/10.1016/j.snb.2019.05.055
- 39. Krishna R.M., Gupta S.K. // Bull. Magn. Res. 1994. V. 16. No. 3. P. 239.
- 40. Taniguchi M., Lindsey J.S. // J. Photochem. Photobiol. C. 2023. V. 55. P. 100585. https://doi.org/10.1016/j.jphotochemrev.2023.100585
- 41. Ghosh D., Chattopadhyay N. // J. Lumin. 2015. V. 160. P. 223. https://doi.org/10.1016/j.jlumin.2014.12.018
- 42. Achyuthan K.E., Bergstedt T.S., Chen L. et al. // J. Mater. Chem. 2005. V. 15. No. 27–28. P. 2648. https://doi.org/10.1016/10.1039/b501314c
- 43. Полетаев А.И. // Хим. физика. 2023. Т. 42. № 9. C. 74. https://doi.org/10.31857/S0207401X23090091
- 44. Терешкин Э.В., Терешкина К.Б., Лойко Н.Г., Коваленко В.В., Крупянский Ю.Ф. // Хим. физика. 2024. Т. 43. № 12. C. 84.
- 45. Разумов В.Ф. // Хим. физика. 2023. T. 42. № 2. С. 14. https://doi.org/10.31857/S0207401X23020139