RAS Chemistry & Material ScienceХимическая физика Advances in Chemical Physics

  • ISSN (Print) 0207-401X
  • ISSN (Online) 3034-6126

Electronic structure of semiconductor nanoparticles in one-component and mixed systems

PII
305190-690181-1
DOI
10.7868/30181-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 44 / Issue number 6
Pages
75-85
Abstract
The distribution of electron density along the radius of nanoparticles in one- and two-component semiconductor systems at different temperatures and radii of nanoparticles has been obtained taking into account physicochemical processes on their surface. The influence of surface modification of In2O3 nanoparticles by CeO2 nanoclusters in changing the distribution of conduction electrons and the magnitude of the electrostatic field in the nanoparticle volume is demonstrated. The role of these distributions in various physical and chemical phenomena involving semiconductor nanoparticles is discussed.
Keywords
оксид индия электронная плотность наночастицы оксид церия
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
90

References

  1. 1. Barsan N., Koziej D., Weimar U. // Sens. Actuators, B. 2007. V. 121. № 1. P. 18. https://doi.org/10.1016/j.snb.2006.09.047
  2. 2. Wang Z., Hou C., De Q., Gu F., Han D. // ACS Sensors. 2018. V. 3. № 2. P. 468. https://doi.org/10.1021/acssensors.7b00896
  3. 3. Majhi S.M., Navale S.T., Mirzaei A., Kim H.W., Kim S.S. // Inorg. Chem. Front. 2023. V. 10. № 12. P. 3428. https://doi.org/10.1039/D3QI00099K
  4. 4. Suematsu K., Ma N., Yuasa M., Kida T., Shimanoe K. // RSC Advances. 2015. V. 5. № 105. P. 86347. https://doi.org/10.1039/C5RA17556A
  5. 5. Yamazoe N. // Sens. Actuators, B. 1991. V. 5. P. 7. https://doi.org/10.1016/0925-4005 (91)80213-4
  6. 6. Lupan O., Postica V., Labat F., Ciofini I., Pauporté T., Adelung R. // Ibid. 2018. V. 254. P. 1259. https://doi.org/10.1016/j.snb.2017.07.200
  7. 7. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2023. Т. 42. № 5. С. 71. https://doi.org/10.31857/S0207401X23050035
  8. 8. Иким М.И., Спиридонова Е.Ю., Громов В.Ф., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 1. С. 102. https://doi.org/10.31857/S0207401X24010128
  9. 9. Пигальский К.С., Вишнёв А.А., Балдин Е.Д., Трахтенберг Л.И. // Хим. физика. 2024. Т. 43. № 3. С. 122. https://doi.org/10.31857/S0207401X24030136
  10. 10. Баян Е.М., Лупейко Т.Г., Пустовая Л.Е., Княщук А.А., Федоренко А.Г. // Хим. физика. 2017. Т. 36. № 7. С. 68. https://doi.org/10.7868/S0207401X17070044
  11. 11. Ikim M.I., Gerasimov G.N., Erofeeva A.R., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. // Chem. Phys. Lett. 2024. V. 845. P. 141321. https://doi.org/10.1016/j.cplett.2024.141321
  12. 12. Cabot A., Arbiol J., Morante J.R. et al. // Sens. Actuators, B. 2000. V. 70. P. 87. https://doi.org/10.1016/S0925-4005 (00)00565-7
  13. 13. Kurmangaleev K.S., Ikim M.I., Bodneva V.L., Posvyanskii V.S., Ilegbusi O.J., Trakhtenberg L.I. // Sens. Actuators, B. 2023. V. 396. P. 134585. https://doi.org/10.1016/j.snb.2023.134585
  14. 14. Karim W., Spreafico C., Kleibert A. et al. // Nature. 2017. V. 541. № 1. P. 68. https://doi.org/10.1038/nature20782
  15. 15. Ohya Y., Yamamoto T., Ban T. // J. Am. Ceram. Soc. 2008. V. 91. № 1. P. 240. https://doi.org/10.1111/j.1551-2916.2007.02031.x
  16. 16. Buckeridge J., Catlow C.R.A., Farrow M.R. et al. // Phys. Rev. Mater. 2018. V. 2. № 5. P. 054604. https://doi.org/10.1103/PhysRevMaterials.2.054604
  17. 17. Hagleitner D.R., Menhart M., Jacobson P. et al. // Phys. Rev. B. 2012. V. 85. № 11. P. 115441. https://doi.org/10.1103/PhysRevB.85.115441
  18. 18. Brinzari V., Cho B.K., Kamei M., Korotcenkov G. // Appl. Surf. Sci. 2015. V. 324. P. 123. https://doi.org/10.1016/j.apsusc.2014.10.072
  19. 19. King P.D.C., Veal T.D., Payne D.J. et al. // Phys. Rev. Lett. 2008. V. 101. № 11. P. 116808. https://doi.org/10.1103/PhysRevLett.101.116808
  20. 20. King P.D.C., Veal T.D., Fuchs F. et al. // Phys. Rev. B. 2009. V. 79. № 20. P. 205211. https://doi.org/10.1103/PhysRevB.79.205211
  21. 21. Bierwagen O., Speck J.S., Nagata T. et al. // Appl. Phys. Lett. 2011. V. 98. № 17. P. 172101. https://doi.org/10.1063/1.3583446
  22. 22. Kurmangaleev K.S., Mikhailova T.Yu., Polunin K.S., Ilegbusi O.J., Trakhtenberg L.I. // Chem. Phys. Lett. 2024. V. 856. P. 141649. https://doi.org/10.1016/j.cplett.2024.141649
  23. 23. Prathap P., Devi G.G., Subbaiah Y.P.V., Ramakrishna Reddy K.T., Ganesan V. // Curr. Appl. Phys. 2008. V. 8. № 2. P. 120. https://doi.org/10.1016/j.cap.2007.06.001
  24. 24. Jimenez B.L.C., Méndez P. H.A., Páez S. B.A., Ramírez O.M.E., Rodríguez H. // Braz. J. Phys. 2006. V. 36. № 3b. P. 1017. https://doi.org/10.1590/S0103-97332006000600058
  25. 25. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56. https://doi.org/10.7868/S0207401X15090046
  26. 26. Landau L.D., Lifshitz E.M. Course of theoretical physics. Statistical physics. Oxford: Butterworth-Heinemann, 1980.
  27. 27. Pines D. Elementary excitations in solids. New York: W.A. Benjamin, 1963.
  28. 28. Герасимов Г.Н., Иким М.И., Тимашев П.С. и др. // Журн. физ. химии. 2015. Т. 89. № 6. С. 1002. https://doi.org/10.7868/S0044453715060126
  29. 29. Hernández-Arteaga J.G.R., Moreno-García H., Rodrí­guez A.G. // Thin Solid Films. 2021. V. 724. P. 138602. https://doi.org/10.1016/j.tsf.2021.138602
  30. 30. Kurmangaleev K.S., Ikim M.I., Kozhushner M.A., Trakhtenberg L.I. // Appl. Surf. Sci. 2021. V. 546. P. 149011. https://doi.org/10.1016/j.apsusc.2021.149011
  31. 31. Бондаренко В.Б., Кузьмин М.В., Митцев М.А. // Физика твердого тела. 2001. Т. 43. С. 1129.
  32. 32. Novozhilov V.B., Bodneva V.L., Kurmangaleev K.S., Lidskii B.V., Posvyanskii V.S., Trakhtenberg L.I. // Mathematics. 2023. V. 11. № 9. P. 2214. https://doi.org/10.3390/math11092214
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library